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Abstract
Methicillin resistant and susceptible Staphylococcus aureus (MRSA and MSSA respectively) remain a public health concern as human 

pathogens. Presence of MRSA and MSSA in river water and urban effluents was studied to analyze the S. aureus population and determine the 
genetic diversity and predominant genotypes obtained by spa types and MLST on each ecological niche. MRSA proportion in urban effluents 
was higher than in river water (P<0.05). According to the Simpson’s Index of Diversity based on spa types, MSSA isolates were more diverse 
than MRSA isolates (P<0.05). Predominant spa types and STs detected in MSSA river water isolates were different from those found in urban 
effluents. In the MRSA population, ST125-t067 was the predominant genotype detected in both urban effluents (67.6%) and river water (82.4%). 
Overall, the MSSA and MRSA lineages most frequently found in river water and urban effluents were human associated clones (ST125-t067, 
ST5-t002; ST22-t032, ST30-t012 and ST15-t084). These results show the potential role of water in the S. aureus maintenance and dissemination. 
Association of isolates from the river with human ones could be reflecting the effect of anthropogenic activities in the ecosystems, which highlights 
the need to evaluate the circulation of pathogens in the environment via water.
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Introduction
Methicillin resistant and methicillin susceptible Staphylococcus aureus 

(MRSA and MSSA) remains a public health concern as human pathogens 
[1]. Different genetic lineages have been described as Hospital Associated-
MRSA (HA-MRSA), Community-Associated-MRSA (CA-MRSA) and 
Livestock Associated-MRSA (LA-MRSA). Infections caused by HA-
MRSA isolates are normally related to risk factors such as hospitalization, 
surgery or indwelling medical devices [2]. CA-MRSA affects to otherwise 
healthy people and infections have been linked to the presence of the 
toxin Panton-Valentine leukocidin or PVL [2]. Finally, LA-MRSA has 
been considered an occupational risk although its frequency of isolation 
is increasing in countries with low prevalence of MRSA [3]. Genetic 
differentiation between these groups is getting more complicated due 
to the incidence of HA-MRSA in the community and vice versa and 
due to the transmission of MRSA between humans and animals [4]. 
Direct contact was pointed out as the most feasible transmission route 
of S. aureus [3]. However, colonized individuals might discharge bacteria 
into urban effluents and recreational water [5,6]. Wastewater treatment 
plants have been described as reservoirs for MRSA, and hypothetically, 
participate in their dissemination through sewage treatment plant 
effluents, as part of the S. aureus population might survive the wastewater 
treatments [6-9]. Moreover, the presence of MRSA in river water [10] 
points out the potential role of water in the dissemination of MRSA, and 
in consequence, into associated environments [8, 9, 11]. These facts led 
us to study the presence of MSSA and MRSA in urban effluents and river 

water to assess the genetic diversity and predominant genotypes within 
each ecological niche. 

Experimental Section 
Samples origin 

One sample of urban effluents was taken in July 2011 in a sewage 
plant that gathers wastewater from several urban collectors (untreated 
wastewater) in an urban nucleus with 3.2 million people (http://www.ine.
es/SID/Informe.do). One river water sample was taken in September 2012 
in the countryside, downstream the municipal term of a city with 8,392 
people (http://www.ine.es/SID/Informe.do). 

Isolation and characterization
Both samples were divided into sub-samples and processed separately 

(n=100 subsamples per sample). Each sub-sample (1 mL) was cultured 
on 9 mL of Muller-Hinton broth (6.5% NaCl, Oxoid) and incubated at 
37°C for 16-20 h. One mL was then transferred to 9 mL tryptone soy 
broth (Oxoid) with cefoxitin (3.5 mg/L, Sigma–Aldrich) and aztreonam 
(75 mg/L, Sigma–Aldrich) and incubated at 37°C for 16–20 h. Finally, 
25 µL were streaked onto Brilliance MRSA plates (Oxoid) and incubated 
for 24–48 h at 37°C [10]. Denim blue colonies (one per subsample) were 
confirmed as MRSA (mecA or mecC positive) by PCR [12]. In parallel, 
100 µL of incubated Muller-Hinton broth (6.5% NaCl) were cultured 
onto Baird Parker (BP) agar with Rabbit Plasma Fibrinogen (bioMerieux) 
and incubated at 37°C during 24-48 h. Black colonies coagulase-positive 
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(one per subsample) were selected as potential S. aureus and confirmed 
as MRSA (mecA or mecC positive) or MSSA (mecA and mecC negative) 
as described above. Confirmed S. aureus were characterized by spa typing 
sequencing the variable fragment of protein A [12], and spa types were 
analysed by the minimal Spanning tree algorithm (Bionumerics 6.0). 
Simpson’s Index of Diversity (SID) and Jackknife pseudo-values (CI: 95%) 
were used to estimate the genetic diversity of S. aureus isolates based on 
spa types (Figure 2; http://darwin.phyloviz.net/ComparingPartitions/
index.php?link=Tool). Multilocus Sequence Typing (MLST) was 
performed to at least one isolate per spa type and isolation route 
(n=103) to obtain the sequence types (STs) according to the protocol 
described before [13]. Detection of Panton–Valentine leukocidin (PVL) 
was also carried out [12]. 

Statistical analysis
Fisher’s exact test (SPSS 20) was calculated to analyze the relationship 

between the type of sample (urban effluents or river water) and the 
presence of MRSA and between the type of sample and the most frequent 
spa types and STs in the collection (n>5 isolates). 

Results and Discussion
MRSA protocol detected 96 MRSA isolates out of 100 subsamples in 

urban effluents, meanwhile only 33/100 MRSA in river water (Table 1). All 
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Figure 1: Clustering of spa types by minimal Spanning tree algorithm.  Lines/numbers between circles represent the genetic distance between 
different spa-types. (*): spa types detected in river water; (^): spa types detected in urban effluents and ( ): shared spa types

isolates obtained by this protocol were mecA-MRSA. On the Baird Parker 
protocol, most of S. aureus isolates were MSSA (Table 1), but some MRSA 
were also detected (5 isolates mecA-MRSA and 1 isolate mecC-MRSA in 
urban effluents and 1 mecA-MRSA in river water). The low detection rates 
of mecC-MRSA compared with mecA-MRSA is in agreement with other 
studies [13-16]. However, the detection of mecC-MRSA in water effluents 
is of interest considering the potential for zoonotic transmission [17] and 
wildlife-environmental interactions of mecC-positive MRSA [10]. 

Only one isolate MSSA from river water was positive to PVL (ST737-
spa type t4801). Some studies described that PVL is increasing in the south 
of Europe and in some areas in Spain, but those are referred mainly to ST8 
and ST80 [18,19], STs whose isolation frequency in our study (Table 1) 
was low (ST8) or undetected (ST80). 

A higher proportion of MRSA isolates was detected in urban effluents 
(102/169; 60.4%) than in river water (34/115; 29.6%), differences 
statistically significant (P<0.05). This higher frequency of isolation of 
MRSA in urban effluents compared with the river water might be related to 
the higher concentration of antimicrobial resistant bacteria in wastewater 
and the population density in the area of sampling [20,21].

Isolates were grouped in 81 different spa types (Figure 1) and 42 STs, 
with 12 spa types and 14 STs being common to both environments (Table 
1). Ten new spa types and 7 new STs were firstly described in this study 
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Sample Methicillin resistance Sequence Type [ST] spa type [number of isolates]

River water

MRSA ST1 t127 [1]
ST5 t10422 [1]

ST106 t056 [1]
ST125 t067 [28], t837 [1]
ST228 t3744 [1]
ST398 t011 [1]

MSSA ST5 t002 [13], t311 [1], t586 [1]
ST6 t701 [1]
ST7 t091 [1]
ST8 t008 [3], t024 [2]

ST12 t160 [1]
ST15 t084 [5], t335 [1], t803 [2]
ST22 t223 [1]
ST25 t078 [6]
ST26 t12664 [1]
ST30 t012 [6], t399 [1], t5224 [1] t12633 [1], t12667 [1], t12668 [1]
ST34 t12773 [1]
ST45 t015 [2], t065 [1], t728 [2]
ST59 t216 [1]
ST72 t148 [3]
ST97 t267 [4]

ST101 t056 [1]
ST125 t067 [1]
ST398 t12666 [3]
ST508 t050 [1]
ST582 t605 [1]
ST737 t4801 [1]a

ST707 t4523 [1]
ST919 t12665 [1]

ST2303 t1877 [1]
ST2746 t073 [1]
ST2747 t2724 [1]
ST2748 t026 [1]
ST2754 t5334 [1]
ST2753 t748 [1]

Urban effluents

ST2812 t021 [1]
MRSA ST1 t127 [5], t386 [2]

ST5 t002 [8], t668 [1]
ST22 t032 [9]
ST72 t148 [1], t9350 [1]

ST125 t067 (69), t3557 [1]
ST398 t011 [1]

ST1094 t11245 [2]
ST2674 t3200 [1]
ST2676b t843 [1]b

MSSA ST5 t002 [3], t010 [2]
ST8 t008 [1]
ST9 t8887 [1]

ST15 t084 [7], t094 [2], t491 [1], t1877 [1]
ST22 t005 [1]
ST25 t2613 [1]

ST30 t012 [13], t018 [1], t021 [5], t122 [1], t238 [1], t584 [1], t710 [1], t1306 [1], 
t11235 [1] 

ST34 t089 [1], t166 [1]
ST45 t065 [1], t620 [1], t11236 [1]
ST49 t11246 [1]
ST72 t1346 [4], t3092 [1], t3169 [1], t3682 [1]
ST97 t5727 [1]

ST106 t056 [3]
ST121 t1114 [1]
ST130 t843 [1]
ST188 t189 [1]

 ST509 t375 [2]

Table 1: Spa types and sequence types [STs] of  S. aureus found in river water and urban effluents.
MRSA: methicillin resistant S. aureus; MSSA: methicillin susceptible S. aureus; aPVL positive isolate; bmecC isolate [13]; bold letter: spa types and STs 
described in this study
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(Table 1). Forty-two different spa types were detected in MSSA isolates 
from river water and 35 in urban effluents. On MRSA isolates, the number 
of different spa types detected from river water and urban effluent were 
7 and 13, respectively (Table 1). This genetic diversity observed in the 
bacterial population of MSSA and MRSA isolates would reflect the S. 
aureus population in both water samples.

MSSA were genetically more diverse than MRSA isolates (Figure 2; 
P<0.05). Simpson’s Index of Diversity (SID) based on spa types was 0.958 
(95% CI: 0.934-0.981) for MSSA isolates from river water and 0.944 
(95% CI: 0.910-0.978) for MSSA isolates from urban effluents (Figure 2; 
P>0.05). This genetic diversity observed in MSSA isolates is similar to that 
observed in previous studies [1]. Despite this high genetic diversity, some 
MSSA genotypes were more frequently isolated. Thus, the most frequent 
MSSA genotypes detected in river water were ST5/spa type t002 (13/81; 
16.0%), ST30/spa type t012 (6/81; 7.4%), ST25/spa type t078 (6/81; 7.4%) 
and ST15/spa type t084 (5/81; 6.2%), while ST30/spa type t012 (13/67; 
19.4%), ST15/spa type t084 (7/67; 10.4%) and ST30/spa type t021 (5/67; 
7.5%) were the most frequent MSSA genotypes in urban effluents. Some 
of these frequent MSSA genotypes have been previously identified in 
human healthy carriers and patients [1,22,23].

Regarding MRSA isolates from river water and urban effluents, SID 
values were 0.326 (95% CI: 0.102-0.550)) and 0.530 (95% CI: 0.412-
0.648) respectively (P>0.05).This low genetic diversity is due to the 
existence of predominant genotypes that included most of the MRSA 
isolates. In particular, the genotype ST125/spa type t067 represented 
the 82.4% (28/34), and the 67.6% (69/102) of the MRSA isolates from 
river water and urban effluents, in that order (Table 1). ST125-t067 has 
been geographically highlighted in Spain representing the major MRSA 
genotype associated with nosocomial infections [1,24]. Other MRSA 
genotypes such as ST22-t032 and ST5-t002 (Table 1) have also been 
associated with human infections [4,22,24]. LA-MRSA were found in 
river water and in urban effluents, although typical genotypes such as ST398/
spa t011 or its single locus variant ST1094 were only sporadically found in 
our study (Table 1).These results are likely due to the limited impact of 
animals in the areas of sampling, close to urban nucleus.

Our data demonstrated that the predominant MRSA and MSSA genetic 
lineages detected in urban effluent and river water were human associated 
genotypes. This is likely associated with the potential of colonized 
individuals to constantly release S. aureus into the environment [5,6,20], 
together with the capacity of S. aureus to persist in the water environments 
[6,10,25]. 

Conclusions
Our data emphasize the potential role of anthropogenic activities in 

the S. aureus dissemination throughout the water, and highlights the 
need to evaluate the circulation and persistence of this pathogen in the 
environment and its possible impact for public health.
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