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The development of a vaccine to prevent human immunodeficiency
virus type I (HIV-1) infection remains an important task in global
health. An ideal HIV-1 vaccine would elicit long lasting high quality
protective antibody (Ab) responses including broadly neutralizing
antibodies (bnAbs) that would inhibit infection [1-4]. One of the major
obstacles to development of an effective HIV-1 vaccine, besides the high
degree of diversity in the envelope proteins (Env) of HIV-1 [1-4], is the
time required to elicit potent bnAbs. As demonstrated by several recent
reports, only a small percentage of HIV-1-infected people were able
to develop bnAbs and only after several years of infection [5-13]. One
peculiar feature of bnAbs is that they are heavily mutated from germline
immunoglobulin sequences, indicating that the B cells producing these
bnAbs have undergone several rounds of mutation and selection in the
germinal center (GC) reaction [3,9,14]. Thus, in order to generate HIV-
1-specific bnAbs through vaccination, strategies must be employed that
maximize somatic hyper mutation (SHM) of immunoglobulin genes
in the GC, as well as the selection of B cell clones that produce bnAbs.
Recent results from the RV144 clinical trial has shown that a viral vector
prime and protein boost HIV-1 vaccine was able to elicit 31% protection,
while protection levels may be higher if the efficacy is calculated within
the first year of vaccinations [15,16]. Additionally, an HIV-1 vaccine
phase 1 clinical study led by Dr. Shan Lu tested a DNA prime and protein
boost vaccination system [17]. This study revealed a highly immunogenic
protocol where a 100% positive response rate of HIV-1 specific antibody
and T cell immune responses was elicited in study volunteers [17]. With
this vaccine regimen, high titer and persisting Env-specific Ab responses
and lower titer cross-neutralizing antibody responses for HIV-1 clades
A to E were generated [17]. However, information about the basic
immunological mechanisms behind such gene-based prime and protein
boost vaccines is almost completely lacking. More information is needed
about the immunological mechanisms involved in development of robust,
high-affinity Ab responses to HIV-1 gp120. Specifically, how the DNA
prime and protein boost system affects the generation of memory B cells
and the responsiveness of the memory B cells is a key question.

Germinal centers (GCs) and memory B cells

In the GC response, antigen (Ag)-specific B cells proliferate and undergo
somatic hyper mutation of Ig genes; high-affinity Abs results by selecting
rare B cells that have undergone advantageous mutation of their Abs [18-
22]. The major outcomes of the GC are plasma cells that directly produce
Ab and long-lived memory B cells (MBCs), however the mechanisms
that control whether a GC B cell becomes a plasma cell or an MBC are
poorly understood. MBC responses to Ag rechallenge are also poorly
understood, although recent work has defined separate subpopulations
of MBCs based on the expression of IgM or CD80 and PD-L2 [23-25].

Received date: 19 Nov 2015; Accepted date: 20
Nov 2015; Published date: 27 Nov 2015.

Citation: Dent AL (2015) Follicular Helper, Follicular
Regulatory T cells and the Germinal Center In HIV
Vaccine Development. Int J Vaccine Immunizat 1(1):
doi http://dx.doi.org/10.16966/2470-9948.e101

Copyright: © 2015 Dent AL. This is an open-access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction
in any medium, provided the original author and
source are credited.

Historically, it was thought that MBCs had undergone class Ig switching
and thus didn’t express IgM. However more recent work has shown the
existence of an IgM+ MBC population [23-25]. Interestingly, CD80 and
PD-L2 expression define functional subpopulations of MBCs [23]. MBCs
that express both CD80 and PD-L2 and are “double positive” (DP) tend to
differentiate into plasma cells upon re-exposure to Ag, whereas MBCs that
lack expression of CD80 and PD-L2 (thus are “double negative” or DN)
tend to re-enter the GC after re-exposure to Ag. The mechanism for this
difference is not yet understood, but it may depend on affinity of the MBC
Ab for Ag and/or the maturation state of the MBC. CD80+PD-L2+ DP
MBCs appear to have higher affinity for Ag and are more differentiated
than CD80-PD-L2- DN MBCs [23]. DN MBCs express higher levels of
the GC B cell transcription factor BCL6, and thus are more GC-like than
DP MBCs [23]. An important question is how to promote the formation of
DN MBC:s that can travel back into the GC to allow for further Ig somatic
hyper mutation, which will help the formation of bnAbs to HIV-1.

TFH cells and TFR cells

Follicular T helper (TFH) cells are a recently characterized CD4 T cell
lineage located in the GC whose specific function is to help GC B cells to
produce high-affinity Abs [18-22]. TFH cells have an activated, effector
T cell phenotype among CD4 T cells and uniquely express very high
levels of PD1. TFH cells are critical for the development of the germinal
center reaction and the resulting memory B cells, plasma cells and T cell
dependent Ab response. A key cytokine produced by TFH cells is IL-21,
a factor that potently promotes B cell activation and Ab secretion. The
BCL6 transcriptional repressor protein is highly expressed in TFH cells
and is considered the master regulator for TFH cells [20-22]. Additionally,
a subpopulation of follicular CD4 T cells was discovered that can act as
suppressors of the GC reaction [26-29]. These cells express both FoxP3
and BCL6 and have been termed follicular regulatory T (TFR) cells. Like
TFH cells, TER cells are dependent on BCL6 for their function. Although
TFR cells are not well understood, TFR cells appear to suppress the
number of TFH cells and GC B cells during the immune response and
also regulate affinity maturation of Abs. Thus, TFR cells have an important
role in affinity selection of Abs during the B cell response. Whether TFR
cells regulate MBCs is not yet clear, however, it seems likely that TFR
cells can alter MBC differentiation. A TFH-like cell population has been
identified circulating in blood (“blood-TFH” cells) [30-36]. Although
they are not true TFH cells, since they lack high-level expression of BCL6
and PDI, these cells are related to TFH cells as they express CXCR5 and
IL-21 and they have strong B cell help activity. TFR-like cells have also
been found circulating in blood [28]. Although also not well understood,
blood-TFH cells appear to be TFH precursors that disseminate early in
an immune response to provide TFH activity to other parts of the body
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[31]. Most strikingly, the percentage of blood-TFH cells increases with an
ongoing Ab response in autoimmunity, vaccination and infection [30-36].
Notably, higher levels of blood-TFH cells correlate with bnAbs in HIV-1-
infected patients [34]. Blood-TFH cells are therefore an attractive marker
for examining TFH cell responses in humans. However, blood-TFH and
blood-TEFR cells have not yet been analyzed in an HIV-1 vaccine setting.

Heterologous prime-boost vaccination

This type of vaccine regimen is often termed simply “prime-boost
vaccination”, and has been shown to be an effective approach for generating
strong, protective immune responses in several different experimental
systems, against several types of pathogens [1,2,17,37-48]. In the prime-
boost approach, the Ag is given in two different forms. Plasmid DNA- or
viral vector-encoded Ag is typically used in the initial “priming” stage,
and then purified protein Ag is given in the subsequent “boost” stages.
The prime-boost approach has been shown to have a unique advantage in
promoting the formation of high affinity bnAbs in HIV-1 vaccine systems
[39,49-51]. Work over the last 15 years in a number of labs has shown
DNA priming to be a very promising vaccination approach. Although
DNA vaccines originally gave low immunogenicity in humans when used
alone, the combination of DNA priming and protein boosting has shown
promise. The NIH-sponsored HIV Vaccine Trial Network is organizing
expanded clinical studies with DNA vaccines.

Conclusion

The over-arching goal of the field is to develop approaches to improve
vaccination against HIV-1, such that there is predictable and stable
production of bnAbs. Future work is needed to clarify how GC B cells and
GC-derived MB cells are regulated by TFH and TFR cells, particularly in
the context of vaccination to HIV-1. This will allow for the development
of new approaches to augment bnAb production following HIV-1
vaccination.
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