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Introduction
Schizophrenia (SCZ) is a major life-long psychiatric disorder, affecting 

men and women equally in 1% of the general population. The majority 
of SCZ patients remain ill after the initial episode, suffering from chronic 
and severely incapacitating symptoms. Genetic studies identified as high 
as 80% heritability of this complex and devastating mental disease [1-3]. 
Genetic variants contribute much to the pathogenesis and progression 
of SCZ. More and more genome-wide association studies (GWAS) have 
identified transcription factor 4 (TCF4) as a high risk gene for SCZ [2,4-
6]. A CTG triplet repeat expansion in an intronic region of the TCF4 
gene is associated with SCZ [7,8]. Six single nucleotide polymorphisms 
(SNPs) of TCF4 [rs12966547 (G) P=2.6 × 10-10, rs9960767 (C) P=4.1 
× 10-9, rs4309482 (A) P=7.8 × 10-9, rs10401120 (T), rs2958182 (T) and 
rs17512836 (C) P=2.35 × 10-8] have been identified as risk variants for 
SCZ [9-12]. In the Han Chinese population, three TCF4 SNPs (rs9320010, 
rs7235757, and rs1452787) are also significantly related to the risk of SCZ 
[2]. The findings in recent GWAS from psychiatric GWAS consortium 
(PGC) with 36,989 cases and 113,075 controls further support TCF4’s 
role in genetic susceptibility to SCZ [13]. However, no significant 
association between rare TCF4 sequence variants and SCZ is found 
[14]. Among the TCF4 variants, rs12966547 and rs8766 are associated 
with the age at onset (AAO), which is a known prognostic indicator 
for SCZ [11]. Disruption of TCF4 expression and function has been 
also linked to several other common and rare diseases such as Pitt-
Hopkins syndrome (PTHS), Fuchs’ endothelial corneal dystrophy (FECD) 
[15,16], and primary sclerosing cholangitis (PSC) [6,17]. In particular, 
PTHS is well known to be caused by TCF4 haploinsufficiency [18-20], 
and is characterized with intellectual disability, autism, epileptic seizures, 
absent speech, hyperventilation and gut dysfunction [21-23]. Therefore, 
targeting TCF4 by modulating its expression/function might be a highly 
promising therapeutic to treat these already-diagnosed patients with 
TCF4 mutations or deficiency. 
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Extensive Function of TCF4, Particularly in Neurogenesis 
and Neuronal Polarization

TCF4 is also known as E2-2; ITF2; PTHS; SEF2; ITF-2; SEF-2; SEF2-
1; SEF2-1A; SEF2-1B; SEF2-1D; bHLHb19 (http://www.ncbi.nlm.nih.
gov/gene/6925). TCF4 should not be confused with the T-cell factor 
4 that regulates Wnt signaling and also associates with SCZ [24,25]. 
TCF4 is a member of class I basic helix-loop-helix (bHLH) transcription 
factors. The bHLH family, known as E-proteins due to their binding to 
Ephrussi box (CANNTG) [18,19], play critical roles in a huge array of 
cellular processes and organogenesis. TCF4 is extensively expressed 
in many tissues but enriched in neurogenic niche during embryonic, 
postnatal and adult neurogenesis [6]. Among the bHLH factors, only 
TCF4 is continuously expressed in the adult nervous system in both 
animals and humans [6]. Generally, TCF4 heterodimerizes with class II 
bHLH proteins, particularly the proneuronal factors such as NeuroD, 
Neurogenin, ATOH1/MATH1, ASCL1/MASH1 to regulate neurogenesis 
and neuronal lineage differentiation [26]. TCF4 homodimerizes [27] to 
regulate gene expression [28,29]. TCF4 also heterodimerizes with class V 
bHLH proteins to inhibit gene expression [30,31]. These findings suggest 
that TCF4 plays an important role in regulating embryonic and adult 
neurogenesis and synaptic plasticity. TCF4 is also involved in lymphoid 
development [32], epithelial-mesenchymal transition [33,34], ocular 
growth [35], T cell differentiation [36] and dendritic cell development [37,38].

The expression of class I/II bHLH proteins is required to initiate 
neuronal differentiation of neural stem cell [39]. However, the class 
II bHLH proteins play a role in regulating the function of terminally 
differentiated neural cells. For example, in Drosophila, the class II bHLH 
protein Atonal functions to promote neuronal migration, axon guidance 
and arborization [40]. In mammals, the Atonal homolog Atoh1/Math1 
is essential for migration of postmitotic retrotrapezoid nucleus neurons 
required for proper respiration [41]. Several class I bHLH proteins are 
expressed in postmitotic neurons in C. elegans [42], mice [43], humans 
[43], suggesting that class I bHLH proteins may also play an important 
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role in postmitotic neurons. The daughterless (Da) gene encodes the only 
type I bHLH protein found in Drosophila [44]. Similar to TCF4, the Da 
protein is expressed in a large number of tissues and is involved in a diverse 
number of developmental processes including neurogenesis [28,45], cell 
proliferation [46,47], muscle development [48], ovarian development 
[49], and retinal development [47,50]. Over expression of Da in mitotic 
epithelial cells is sufficient to arrest these cells in G2 phase of the cell cycle 
[51]. Our recent studies show that Da is expressed in postmitotic neurons 
of the fly neuromuscular junction, and functions to restrict axonal 
arborization (bouton), while Tcf4 is also expressed in mouse postmitotic 
neurons and functions to restrict neurite branching [52]. However, more 
experimental evidence is warranted to support the importance of Tcf4/
Da in neuronal polarization, in particular the presynaptic (axonal) vs the 
postsynaptic (dendritic) branching/pruning. 

Tcf4 Binding Partners and Downstream Target Genes in 
Postmitotic Neurons

In addition to binding to the target DNA, TCF4 binds to many proteins, 
particularly bHLH family of transcription factors. Its homodimerization 
or heterodimerization with binding partners contributes to its action 
in regulating the expression of target genes [26,28,29]. Bioinformatics 
analysis identified thousands of downstream target genes that are 
regulated by TCF4/Da in mitotically active cells [33,53]. For example, 
TCF4 binds to proneuronal proteins such as NeuroD, neurogenin, Mash1, 
Math1 to regulate neurogenesis and neuronal lineage differentiation [54-
56]. Neurexin 1 (Nrxn1) is emerging as susceptibility factor for SCZ and 
its rare copy number variants are found to contribute to the pathogenesis 
of SCZ [57,58]. Deletions within the Nrxn1 gene affecting exons confer 
SCZ risk and are associated with autism and mental retardation [59,60]. 
TCF4 directly binds to Nrxn1 promoter/enhancer region in mature 
mammalian neurons to repress its transcription [52]. In Drosophila, Da 
forms homodimers which mediate synapse restriction via inhibition of 
Nrxn1 expression [52]. Thus, Nrxn1 may partially mediate TCF4-related 
phenotypes for SCZ. The variants in miR-137 gene are significantly 
associated with SCZ. SCZ patients with homozygous miR-137 risk allele 
display significant decreases in occipital, parietal and temporal lobe gray 
matter concentration [61]. Dysregulation of miR-137-regulated genes 
such as TCF4, PTGS2, MAPK1 and MAPK3 may underlie the gray matter 
loss seen in SCZ patients [61]. TCF4 acts as a regulator of neuronal 
intrinsic excitability by suppressing two ion channel genes, Kcnq1 and 
Scn10a [62]. The downstream effectors of TCF4 pathway are essential for 
understanding the molecular mechanisms underlying TCF4-associated 
diseases. Altering the expression or function of TCF4 downstream 
effectors may improve the cognitive in SCZ patients. Potential therapeutic 
chemical/natural compound(s) could be screened in human cell model or 
transgenic animal models to control the expression of TCF4 and/or target 
genes [63]. Recently, HDAC inhibitor treatment in mouse model has been 
shown to rescue learning and memory deficits caused by loss of TCF4 
function [64]. To develop valid therapeutics, controlling specific genes’ 
expression is pivotal.

The Potential Therapeutic Strategies and CRIPSR-Cas9 
Technology

So far, no effective treatment is available for TCF4-associated 
diseases although different therapeutics has been used to improve the 
SCZ symptoms, such as antipsychotic prescription and psychosocial 
intervention [65-67]. It is still a big challenge to develop new effective 
therapy for SCZ because the etiology and pathogenesis of SCZ remain 
largely unclear. Many transcripts/isoforms exist in both human TCF4 and 
mouse Tcf4. Different types of cells (particularly subtypes of neurons) may 
express different isoforms at various levels. Various types of SNPs may 
contribute to SCZ development in a different way. Therefore, isoform-

specific and/or cell-specific manipulation of TCF4 expression and/
or gene mutation correction would provide a novel therapy for TCF4-
assocaited diseases. Spatiotemporal control of endogenous non-mutant 
TCF4 in attempt to restore the “normal” expression/function of TCF4 
may be also an interesting therapeutic strategy for patients with TCF4 
haploinsufficiency. 

The RNA-guided endonuclease CRISPR-Cas9 technology has emerged 
as a simpler and more versatile technology to target and modify any 
genomic sequence with high levels of efficacy and specificity [68]. 
Successful application of Cas9 technology to mammalian system for 
genome editing was first reported in early 2013 [69,70]. Since then, this 
novel genome editing system has attracted a huge amount of attention 
in the biomedical field. In particular, extensive preclinical examples have 
been seen in the fields of animal models, genetic diseases, cancer biology 
and infectious diseases [71-75]. Efficient Cas9-mediated transgene 
knockin has been recently reported in various cell lines [76-81] and 
different species including mice [82,83], rats [84,85], pigs [86,87], zebrafish 
[81,88,89], etc. Simultaneously, the use of the catalytically-deficient Cas9 
(dCas9) conjugated with a single transcriptional activator or repressor 
to manipulate cellular gene regulation has been developed [90-93]. This 
single regulator system has its limitations, such as effectiveness of gene 
activation or repression and scalability. Thus, recruitment of multiplex 
transcriptional activators or repressors through guide RNA (gRNA) 
modification and/or dCas9 fusion has been explored [94-99]. For example, 
dCas9-based synergistic activation mediator (SAM) system has been 
developed by engineering the single gRNA (sgRNA) through appending a 
minimal hairpin aptamer to the tetraloop and stem loop 2 of sgRNA [100]. 
Such aptamer is capable of binding to the dimerized MS2 bacteriophage 
coat proteins. Thus, a novel MS2-p65-HSF1 complex guided by target-
specific MS2-mediated sgRNA (msgRNAs) could facilitate the potency of 
dCas9-mediated gene activation by up to 3,000 fold [100]. This dCas9-
SAM technology is capable of activating the provirus in HIV-1 latent 
cells for the “shock and kill” strategy to cure HIV/AIDS [101]. Similarly, a 
dCas9-engineered transcriptional repressor (ETR) system that combines 
several epigenome repressors has been established to achieve long-term 
suppression of endogenous genes [102]. The dCas9 system relies on 
target-specific sgRNAs and delivers multiple exogenous transcriptional 
activators or repressors to the target site. Furthermore, the dCas9 does 
not keep nuclease activity, and never induce any DNA mutation or 
chromosome translocations in host cells. Therefore this dCas9 system has 
high specificity, high efficiency and no/low cytotoxicity.

Most exciting application of Cas9 technology is the genetic correction 
[103-105] and antiviral treatment in animals [106,107] and likely soon in 
the clinic. Clinical trials for Cas9-mediated cancer targeting have been 
initiated [108,109]. The proof of concept to apply the Cas9 and/or dCas9 
genome/epigenome editing technology to the manipulation of SCZ risk 
genes has been proposed in several reviews [110-112]. Experimental 
evidence to target SCZ-derived induced pluripotent stem (iPS) cells 
has been reported recently [113,114]. The effective knockout of Tcf4 by 
Cas9/sgRNA in embryonic neural cells via in-utero electroporation has 
been shown to alter the intrinsic excitability of prefrontal neurons [62]. 
However, it is still a long journey to unlock genetics of SCZ diseases using 
CRISPR-Cas9 technology.

The spatiotemporal expression of the TCF4 gene is extraordinarily 
intricate and difficult to study because (1) There are many splicing events 
and variant transcripts of TCF4 in both human and animals, with 30 
exons in mouse Tcf4; (2) No good antibody against TCF4 (and particularly 
its various isoforms) is currently available; (3) Traditional knockin tagging 
(reporter) modeling is time-consuming and insufficient. Even with a good 
antibody, the immunohistochemistry study cannot detect the dynamic 
and quantitative changes in TCF4 protein. TCF4 promoter-driven 
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reporter assay may address the transcriptional regulation of different 
TCF4 transcripts in human and animals, but this in vitro assay is artificial 
and does not measure the spatiotemporal expression of endogenous TCF4, 
rather than various isoforms. Therefore, CRIPSR-Cas9 mediated reporter 
knockin technology may provide a novel approach to manipulate the 
spatiotemporal expression of the endogenous TCF4 gene in cultured cells 
(in vitro) or transgenic animal models (in vivo). Many drugs have been 
approved by FDA for their safety and pharmacokinetic profiles in patients. 
In addition, the manufacturing and distribution networks are readily 
available. Therefore, repurposing existing drugs for novel unanticipated 
function would be a rapid and effective way to develop potential new 
therapy for neurodevelopmental disorders and neuropsychological/
neuropsychiatric diseases. T﻿he highly sensitive bioluminescence assay in 
endogenous TCF4 reporter knockin cells may provide an excellent high 
throughput screening for FDA-approved drugs. By screening, we may 
identify potential FDA-approved drugs that specifically and efficiently 
upregulate or downregulate the expression of endogenous TCF4 in human 
iPS-derived cells or animal models.

Conclusion
In the context of all the TCF4-associated diseases, the critical question 

is which copy, the insufficient normal TCF4 or the over expressed mutant 
TCF4, is the de novo cause to the development and progression of these 
diseases. Therefore, better understanding the expression pattern and 
different function of the mutant and non-mutant TCF4 in the nervous 
system, cornea and liver is fundamental to the development of novel 
therapeutic treatment for these debilitating diseases. The causative effect 
of the haploinsufficient normal TCF4 and the mutant TCF4 due to SNP 
variants, triplet repeat or deletion has yet to be characterized. Developing 
a novel dual reporter disease model by targeting endogenous normal and 
mutant copies of TCF4 might be an important future direction. We expect 
to see that manipulation of insufficient normal TCF4 expression may 
counteract the mutant TCF4 to achieve sufficient normal function.
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