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During brief, high intensity exercise, rapid changes in metabolism 
and muscle function occur. This may ultimately result in an inability to 
maintain performance, force or required exercise intensity. These processes 
collectively contribute to the phenomenon of fatigue Hermanson [1], 
Wootton and Williams [2] investigated the influence of recovery duration 
on repeated maximal sprints. The exercise task was randomly assigned 
and consisted of five 6-sec maximal sprint bouts, with either 30 or 60-
sec recovery periods between each sprint. The test protocol used was 
similar to that of the Wingate test Bar-Or et al. [3]. Loadings were pre-
determined to ensure that each subject would achieve the maximal power 
output attainable, while pedalling within the range of 150 to 160 rpm. 
The results showed that the capacity to perform repeated 6-sec bouts of 
maximal exercise on cycle ergometers was markedly influenced by the 
preceding number of sprints. The study also demonstrated that muscle 
contraction was dependent on the ability to recover muscle performance 
following brief maximal intensity exercise. Effects of recovery duration 
on performance and fatigue during multiple treadmill sprints was 
investigated by Holmyard et al. [4]. Ten rugby union backs volunteered to 
participate in the study. 

A non-motorised treadmill was used for the sprint tests which allowed 
the subjects to run at unrestricted speeds. Fatigue was recorded as a 
decrease in running speed. 

The experimental protocol consisted of ten 6-sec maximal sprints, with 
either a 30-sec or 60-sec recovery period between each successive sprint. 
The results obtained showed that performance during brief duration, 
multiple treadmill sprinting was affected by both the recovery interval 
and by the preceding number of sprints. With 30-sec recovery only 5 
sprints could be performed before fatigue influenced power outputs. 
Alternatively, 60-sec recovery duration enabled power outputs to be 
maintained throughout the duration of testing. The larger decrease in 
performance observed with the 30-sec recovery interval may be due to 
an incomplete resynthesis of PC and also a possible greater acidosis. This 
may have resulted from the limited time for translocation of H+ from the 
muscle to blood.  It has been suggested that H+ causes fatigue by either 
inhibiting energy provision from anaerobic glycolysis through moderating 
the activity of phosphofructokinase (PFK) or by affecting the contractile 
mechanism itself Hermanson [1]. The maximal rate of energy expenditure 
cannot exceed the activity of the ATP hydrolysing enzymes (ie muscle 
ATPase activity). Myofibrillar ATPase activity has been determined 
during maximal static contraction in skinned human muscle fibre to 0.10, 
0.27 and 0.41 mmol.l-1s-1 in type I, IIA and IIB fibres respectively, Stienen 
et al.  [5]. Assuming a Q10 of 2, 3.3l of H2O per kg-1 dry mass of muscle and 
2.7 times higher energy turnover during maximal dynamic exercise than 
static contraction Potma et al. [6] it can be calculated that maximal ATP 

expenditure is 6.5, 17.6 and 26.6 mmol ATP kg-1 dry mass in type I, IIA 
and IIB fibres respectively. This value approximates to the value observed 
in mixed muscle during 10s of maximal cycling (15 mmol ATP kg-1 dry 
mass; Jones et al. [7]. It therefore seems plausible that the release of energy 
during short bursts of activity (<5 s) is not limited by the rate of ATP 
supply but rather by limitation in ATP hydrolysis. 

The higher degree of PCr depletion Hiroven et al. [8] and plasma NH3 
accumulation Hageloch et al. [9] during the initial phase of sprinting in 
sprint trained subjects support this contention. The amount of energy 
that can be produced from PCr is rather small and is limited by the 
intramuscular stores of PCr. Fast twitch fibres contain 15 - 20% more 
PCr than slow - twitch fibres Soderlund et al. [10] which is in accordance 
with the higher glycolytic capacity of this fibre type. With the maximal 
rate of PCr breakdown one would expect complete depletion of PCr 
within 10s Jones et al. [7]. However, PCr breakdown can contribute to 
ATP generation for more than 20 s because ATP is supplied from other 
energy sources and because energy expenditure decreases after a few 
seconds of contraction. Following 10 s of maximal exercise the power 
output decreases Nevill et al. [11] Hiroven  et al. [8]. These first signs of 
fatigue have been shown to correlate with substantial decreases in muscle 
PCr. On the basis of thermodynamic considerations the maximum rate 
of PCr breakdown and therefore ATP generation would fall when the 
PCr content decreases. Availability of PCr may therefore be a limiting 
factor for power output even before the muscle content of PCr is totally 
depleted. This may partly explain why the power output decreases after 5 
s of maximal cycling despite the fact that a considerable portion of PCr 
remains in the working muscle Sahlin et al. [12]. Maximal force is related 
to muscle PCr both during contraction and the recovery period. Similarly, 
after maximal cycling, peak power is restored with a similar time course 
as PCr Nevill et al. [11]. Recent studies have demonstrated that the muscle 
store of total creatine (PCr+Creatine) can increase by about 10-20% after 
oral creatine supplementation Harris et al. [13]. Creatine supplementation 
was shown to increase performance during high intensity exercise in some 
studies Balsom et al. [14] Greenhaff et al. [15] Earnest et al. [16] but not in 
others Barnett et al. [17] Deutekom et al. [18]. 

Post-exercise hypoxanthine Balsom et al. [14] and plasma NH3 
Greenhaff et al. [15] were reduced following creatine supplementation 
despite the fact that there was an increase in work performed. These 
findings support the hypothesis that limitations to energy supply are a 
major cause of fatigue during high intensity exercise. Based on the in vitro 
experiments of Cooke et al. [19] and the in vivo experiments of Wilson et 
al. [20] it has been suggested that increases in Pi may contribute to fatigue. 
Concomitant with the decline in PCr there is almost a stoichiometric 
increase in Pi and the observed correlation between PCr and force 
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during exercise and recovery may therefore be an effect of increased Pi 
and not energy deficiency per se Sahlin et al. [12]. However, creatine 
supplementation increases pre - exercise PCr Harris et al. [13] and 
therefore one could expect augmented release of Pi and an earlier onset 
of fatigue. The finding that performance is improved following creatine 
supplementation cannot be reconciled with the hypothesis that increases 
in Pi is a major cause of fatigue Woledge [21].
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