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Introduction 
Endothermy represents a key evolutionary innovation that enables 

mammals, birds, and a mesopelagic fish (the Opah) to become high-
performance predators with fine-tuned neural conductance, faster 
reaction rates, increased muscle power, and greater capacity for sustained 
aerobic activity [1,2]. Under various environmental and physiological 
conditions, endotherms maintain a nearly constant core body temperature 
(normal daily variation of 0.5°C in humans) but allow other fundamental 
physiological parameters (respiration, heart rate, blood pressure, etc.) to 
fluctuate over a much wider range [3,4]. Despite the fact that humans 
are endotherms, body temperature abnormalities are among the most 
commonly noted symptoms of in-hospital patient population [5-7]. 
Central nervous system (CNS) injuries are the leading cause of death 
and disability in persons aged 15-24 [8]. Severe and acute pathologies 
affecting the CNS are also becoming leading causes of overall disability 
and death in countries where an increasing percentage of the population 
is aging [9,10].  Cerebrovascular disease (stroke) alone is currently the 
2nd leading cause of death globally [11]. Humans, as endotherms, regulate 
body temperature within a narrow range centered around a basal mean 
temperature that varies little in the absence of pathology. Spontaneous 
temperature fluctuations outside the normal range occur commonly in 
neurological patients and remain a significant clinical challenge with 
much uncertainty regarding their biological significance and optimal 
treatment [6,7,12-19].

Deviations of body temperature from its normal range are so common 
in systemic inflammation that both fever and hypothermia are symptoms 
included in all the recent definitions of sepsis and related syndromes 
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Abstract 
Although body temperature is one of the most tightly regulated homeostatic parameters in humans, temperature abnormalities are frequently 

encountered in the in-hospital patient population, particularly in those with central nervous system (CNS) pathologies. CNS injuries are a prevalent 
cause of death and disability in young persons and on the rise among older persons. Brain and body temperature fluctuations in patients with 
cerebral pathologies are as of yet poorly characterized. The objective of this paper was to review our state of knowledge about spontaneous 
temperature fluctuations, specifically as they pertain to neurological patients. We provide an overview of the data on spontaneous temperature 
fluctuations (hyperthermia and hypothermia). ‘Is Hotter Better?’ evaluates how ambient temperature impacts human thermoregulation and health, 
reviews therapeutic benefits of induced hyperthermia, and discusses adverse outcomes of spontaneous hypothermia. In ‘Is Colder Cooler?,’ we 
review the link between fever and poor outcomes, the detrimental effects of spontaneous hypothermia on mortality, beneficial cerebral effects of 
spontaneous hypothermia after ischemic brain insult, and the clinical role of therapeutic hypothermia. We conclude that the net effects of early 
and spontaneous body temperature fluctuations in illness likely depend on the underlying pathological process, specific tissue vulnerabilities 
towards temperature-induced collateral damage, and the magnitude and duration of spontaneous temperature fluctuations. The paper calls for 
the community to expand our attention to investigating effects of the entire range of spontaneous body temperature fluctuations in CNS illness, 
because at present, the therapeutic effect of targeted temperature management in neurological patients remains uncertain.
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[20,21]; to date, however, research efforts in the sphere of cerebral pathology 
have primarily focused on spontaneous body temperature elevations and 
the development of interventions for hyperthermia. Despite lack of clearly 
demonstrated clinical benefits [16,17], standard practice and common 
wisdom endorse treatment of spontaneous temperature elevations 
in neurological patients [22]; in contrast, spontaneous temperature 
reductions have undeservingly received much less attention. In this paper, 
we analyse the current literature and review the present state of knowledge 
concerning spontaneous body temperature fluctuations in neurological 
patients with CNS illnesses. Aiming to take account of the entire range 
of spontaneous body temperature fluctuations in such patients, we first 
provide a comprehensive overview of data focusing on both ends of the 
spectrum (hyperthermia and hypothermia) and then discuss the data in 
greater detail. This paper will not discuss thermodysregulation after spinal 
cord injury because it involves dysfunction of the peripheral cold/warm 
receptors, autonomic control, and sweating mechanisms that are beyond 
the scope of this review.

Overview 
Human thermoregulatory physiology involves systemic and complex 

homeostatic mechanisms. Conceptually, it consists of an afferent sensory 
limb with both warm-sensitive and cold-sensitive thermoreceptors, 
a central processing center (the hypothalamus) that controls the 
thermoregulatory set point, and an efferent response limb that induces 
appropriate heat preservation or heat loss responses. Heat in humans is 
generated by electron exchange in mitochondria, mostly in liver, brain, 
heart, and in skeletal muscle contraction. Endotherms rely on centrally 
released hormonal uncoupling agents to increase the rate of heat 
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generation. Uncoupling agents allow protons to escape from the inner 
mitochondrial membrane, which allows for heat generation in lieu of 
ATP production. Heat is preserved by peripheral vasoconstriction, muscle 
contraction (shivering), etc. Heat in humans is lost by convection, conduction, 
radiation, and evaporation; that is, by peripheral vasodilatation, sweating, etc.

The dynamics of brain-body temperature fluctuations are particularly 
important in patients with cerebral pathologies but have not yet been well 
characterized. Under normal circumstances, while brain temperature is 
higher than core body temperature, the two are tightly correlated [23,24]. 
In patients with brain injury, there may be dissociation between brain and 
core body temperature, such that body temperature may not be a reliable 
surrogate for brain temperature. This dissociation between brain and 
core body temperature (e.g. brain thermopooling) occurs when cerebral 
blood flow is insufficient to decrease brain tissue temperature. There is 
heterogeneity in the brain temperature based on region, a phenomenon 
that has been referred to as selective brain cooling [25,26]. Brain regions 
close to the well-ventilated scalp-sinus pathway and the anterior cranial 
fossa, like the frontal lobes, appear to be relatively protected from states 
of hyperthermia [26]. However, the majority of studies concerning 
spontaneous temperature alterations are based on systemic not brain 
temperature [27,28].

Abnormally elevated temperatures may have infectious [29-32] or 
non-infectious causes. Non-infectious mechanisms include conditions 
associated with inflammation (e.g. myocardial infarction, pancreatitis), 
drug hypersensitivity reactions, neurogenic fever, etc. [33-36], and 
hyperthermia syndromes (heat stroke, neuroleptic malignant syndrome, 
adrenal crisis, severe thyrotoxicosis, etc.) [27,28,37-40]. The causes 
of elevated body temperature fall into two categories: true fever (i.e. 
hypothalamic set point elevation) and hyperthermia (i.e. normal 
hypothalamic set point). Hypothermia can be caused by cold exposure, 
severe infection, endocrine abnormalities, and drug overdose [41-43]. 
Conceptually, it is important to distinguish between physiologically 
regulated or dysregulated processes leading to body temperature 
abnormalities. In a physiological response to acute illness, the normal 
hypothalamic thermoregulatory set point becomes adjusted, and the 
hypothalamus maintains homeostasis around this new set point. The 
subsequent temperature fluctuations are still physiologically regulated by 
the same mechanisms involved in normal temperature homeostasis. Fever 
is typically part of a cytokine-mediated systemic inflammatory response 
syndrome triggered by various infections or a range of non-infectious 
etiologies (trauma, major surgery, and severe pancreatitis) [30,34,35,44]. 
It is considered physiologically regulated due to an upward adjustment 
of the normal hypothalamic thermoregulatory set point [45]. Conversely, 
hyperthermia seen in conditions like neuroleptic malignant syndrome 
represents a physiological system failure to balance heat gain and loss 
while the hypothalamus attempts to maintain thermal homeostasis 
around a normal temperature set point.

There are several neurological disorders in which dysfunctional 
thermoregulation are a central feature despite no focal hypothalamic, 
brainstem, spinal lesions, or autonomic failure [46]. Paroxysmal 
hypothermia with hyperhidrosis (PHH), multiple sclerosis (MS), 
and Wernicke encephalopathy are three clinical conditions in which 
spontaneous episodic hypothermia may occur [46]. PHH entails episodes 
of hypothermia, with associated pallor, flushing, bradycardia, generalized 
weakness, ataxia, confusion, paroxysmal hyperthermia (reverse Shapiro 
syndrome), wide temperature fluctuations, and/or migraines, especially 
in children [46]. External warming is typically not successful [46]. 
While PHH is not consistently associated with any structural brain 
abnormalities, a central theory is that PHH is caused by a low core 
temperature set point as well as hyper functional sweat response due to 
impaired voltage-gated potassium channels that normally limit the firing 

frequency of the warm-sensitive neurons in the preoptic hypothalamic 
area [46]. While hypothermia episodes in MS are not consistently 
associated with any structural brain abnormalities, in MS, as in Wernicke 
encephalopathy, the periaqueductal gray area (PAG), held to be a relay 
station for cold-response pathways, has been compromised at the same 
time as hypothermic episodes have been observed clinically [46-48].

Temperature regulation changes in humans with age. For example, 
older patients do not usually have fevers of the same magnitude as 
younger patients in response to infection [49,50]. A variety of reasons, 
including immune senescence and malnutrition, have been cited for the 
blunted fever response observed in older patients, but it is unclear how 
the blunted fever response in older patients contributes to outcomes from 
cerebral pathology in older age [49,50].

Best clinical practice guidelines mandate that thermoregulatory 
failure-induced body temperature abnormalities (heat stroke, 
hypothermia from cold exposure, malignant hyperthermia) require 
prompt, acute, and intensive care to rapidly normalize body temperature. 
In contrast, the appropriate clinical approach towards spontaneous body 
temperature fluctuations from physiologically regulated responses to 
acute illnesses remains a matter of debate. Furthermore, in neurological 
patients, a clear distinction between regulated versus dysregulated 
temperature fluctuations is often difficult to discern, particularly 
because certain CNS pathologies may directly or indirectly compromise 
hypothalamus function. Dysregulated temperature fluctuations in the 
form of neurogenic fever occur particularly frequently in patients with 
subarachnoid hemorrhage, intraventricular bleeds, and traumatic brain 
injury [51]. While the mechanisms of how CNS injury leads to dysthermia 
are likely multifold, one favoured mechanism for how neurogenic fever 
occurs is via hypothalamus injury [51]. From a proteomic analysis of 
hypothalamic injury in heatstroke rats, we know that hypothalamus 
injury leads to hypothalamic ischemia, apoptosis, and injury as evidenced 
by upregulation of L-lactate dehydrogenase, blood-brain-brain disruption 
via upregulation of glial fibrillary acidic protein, oxidative stress via 
upregulation of cytosolic dehydrogenase-1, and activated inflammation 
via downregulation of stathmin 1[52].

Is Hotter Better?
The metabolic production and retention of heat to maintain a body 

temperature above the ambient temperature is energetically expensive. 
Nevertheless, powerful selective advantages have allowed endotherms 
to evolve towards a higher and higher body temperature until a balance 
was reached beyond which any further temperature increase would result 
in deleterious effects (such as decreased protein stability) out weighing 
its benefits. The range of body temperatures observed in modern 
mammals and birds is broadly similar, suggesting a common evolutionary 
temperature limit that has been driven as high as possible [1]. 

Thomas Sydenham, the father of English medicine, magisterially stated 
300 years ago: ‘Fever is a mighty engine which nature brings into this 
world for the conquest of her enemies’ [53]. As a nearly ubiquitous host 
response to infection, fever may confer a strong survival advantage despite 
its metabolic cost; conversely, lower body temperatures in patients with 
infections are associated with an extremely high mortality rate [54]. In 
the context of CNS infections, a retrospective analysis of 6,396 patients 
with meningitis and encephalitis suggested that early fever as high as 
40.0°C or above was not associated with increased hospital mortality and 
may be beneficial [7]. In the early part of the 20th century, therapeutic 
hyperthermia was developed when Nobel laureate Julius Wagner-Jauregg 
induced fever in patients with neurosyphilis-related progressive paralysis 
by injecting them with blood from patients with malaria. His work on fever 
therapy effectively improved the remission rates of such paralysis from 
1% to 30% [55]. Subsequently, inducing a hyperthermia of 41.7°C for six 
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hours in a special heat chamber was shown to cure 81% of gonorrhea cases 
[56]. Clearly, there is a historical precedent of hyperthermia induction in 
the medical field in the context of infection. In the context of brain injury, 
the effect of hyperthermia appears to depend on the type of neurological 
injury; compared to patients with fever and intracerebral hemorrhage, 
traumatic brain injury (TBI), or aneurysmal subarachnoid hemorrhage, 
patients with acute ischemic stroke with fever have the highest mortality risk [57].

As an acute response to infectious illness, spontaneous hypothermia 
is much less common than fever but it is significantly associated with 
extreme severity of disease and death [42,58,59]. An association between 
hypothermia and detrimental clinical outcomes has been identified in 
trauma patients and in patients undergoing elective surgeries [60]; in fact, 
hypothermia has been shown to be the most important prognostic factor 
for poor outcome in a large series of prospective studies of trauma patients 
[61-63]. In patients with non-infectious cerebral pathologies, early low body 
temperatures (33 to 36°C) are also associated with poor outcome [64-69].

Is Colder Cooler?
Direct recordings of cerebral temperature in the subdural space and 

brain parenchyma in patients with a variety of intracranial pathologies 
after neurological surgery show that no specific cooling mechanism 
other than heat uptake by arterial blood exists that protects the delicate 
brain from fever, such that brain temperature is consistently the highest 
recorded temperature compared to other body sites, in normothermia or 
in fever [46,70,71]. Hypothermia tends to be well-tolerated by neurons, 
but according to in vitro studies, hyperthermia (exceeding 40°C) adversely 
affects neurons, glia, endothelial, and epithelial cells [46,72,73]. Indeed, 
fever has been associated with poor functional outcome in patients 
after acute ischemic stroke [24,74], intracerebral hemorrhage [75], 
subarachnoid hemorrhage [76,77], and TBI [78,79]; furthermore, fever 
has been associated with increased intensive care unit (ICU) length of stay 
(LOS), hospital LOS, and overall mortality [6,80]. A consistent association 
between fever and poor outcome was also validated in a comprehensive 
meta-analysis in patients with brain injury [81].

Incidence of spontaneous hypothermia in brain injury appears to range 
from 1% [57] to 15% [64] at ICU admission. A penetrating mechanism 
of TBI, injury severity, and undergoing an exploratory laparotomy before 
admission are independent risk factors for developing hypothermia 
[82,83]. Old age, co-morbid conditions, and comatose state are associated 
with an increased incidence of spontaneous hypothermia in patients with 
brain injury [57].

Based on the data that fever in brain injured patients is associated with 
poor outcomes [81], one might expect hypothermia to carry beneficial 
effects. However, a retrospective review of trauma patients showed that 
hypothermia on surgical ICU admission is associated with decreased 
survival [83]. In line with this finding, an analysis of 11,033 patients with 
severe TBI revealed that hypothermia at hospital admission was associated 
with a significant increase in mortality risk [84]. In-hospital mortality 
rates for patients with hypothermia at admission range from 54% to 
79% [57]. Trauma patients with hypothermia at hospital admission have 
adjusted odds ratios for mortality three times higher than patients with 
normothermia [83,85], and admission hypothermia is an independent 
risk factor for mortality in trauma patients [85,86]. In one study of body 
temperature in trauma patients, mortality rate reached 100% when body 
temperature fell below 32°C [62,83], whereas overall mortality rate in 
trauma patients was 39% [87]. Taken together, the data indicate that 
spontaneous hypothermia in trauma patients at admission is associated 
with increased mortality.

In the animal literature, a small number of studies indicate a 
therapeutic benefit of spontaneous hypothermia, which appears to 
preserve brain function by protecting temperature-sensitive brain areas 

from injury and limiting infarct size after an ischemic event. In one 
study, spontaneous hypothermia in rats after asphyxia cardiac arrest was 
associated with decreased mortality and less injury to the temporal cortex, 
parietal cortex, thalamus, CA1 and CA2 neurons in the hippocampus, 
subiculum, and cerebellar Purkinje cells than was seen in rats subjected to 
a controlled normothermia intervention [88]. The neuroprotective effect 
of spontaneous hypothermia persisted for six weeks [88]. Spontaneous 
hypothermia also appears to have a protective effect after an ischemic 
event in the brain. In rats that sustained permanent occlusion of the 
middle cerebral and transient (60-minute) occlusion of the bilateral 
carotid arteries to induce cerebral ischemia, spontaneous hypothermia 
down to 32°C was associated with decreased infarction volume compared 
to rats in which brain temperature was artificially maintained at 37.5°C 
and compared to rats in which spontaneous hypothermia was prevented 
for 40 minutes [89]. In another study, rats with a spontaneous brain 
temperature decline from 36°C to 31-30°C after a transient ischemic insult 
to the brain showed no striatal damage and only inconsistent damage to 
the CA1 neurons in the hippocampus, in contrast to rats in which striatal 
brain temperature was maintained at 36°C [90]. Spontaneous hypothermia 
of the brain in response to ischemic insult affects different brain areas 
differently. For instance, there is evidence that the caudoputamen is 
extremely temperature-sensitive to temperature increases or decreases of 
as little as 2°C, whereas the CA1 layer of the hippocampus appears to be 
temperature-sensitive in a linear rather than the step-wise fashion of the 
caudoputamen [91]. However, these results come from a study in which 
body temperatures during ischemic brain insult were maintained at 35°C, 
37°C, or 39°C. It is unclear whether the differential neuronal temperature 
vulnerabilities of brain areas like the caudoputamen and CA1 layer of 
the hippocampus are identical in spontaneous as opposed to induced 
hypothermia.

In the clinical literature, a small number of studies indicate a 
therapeutic benefit of spontaneous hypothermia after asphyxia cardiac 
arrest [88], cerebral ischemia [89], and transient ischemic insult [90]. 
Therapeutic hypothermia has well-established clinical roles in ischemic 
brain injury due to cardiac arrest [92-96] and hypoxic ischemic neonatal 
encephalopathy [97,98]. In order to be therapeutic after cardiac arrest, 
induced hypothermia need not be extreme; in fact, a multi-center, 
international, randomized controlled trial in thirty-six ICUs in Europe 
and Australia showed that mild induced hypothermia (36°C) after the 
cardiac event has similar outcomes on neurological function after 180 
days as moderate induced hypothermia (33°C) [93]. Another trial showed 
that therapeutic hypothermia with a target temperature <34°C suffices 
for favorable neurological outcomes post-cardiac arrest [94]. However, 
induced hypothermia is not a panacea. While mild hypothermia after 
cardiac arrest is significantly associated with good neurological recovery 
in most patients, mild hypothermia after cardiac arrest in patients with 
diabetes mellitus is actually detrimental to neurological recovery and 
survival outcomes [99]. More recent data suggest that normothermia 
(36°C) yields similar outcomes as hypothermia after cardiac arrest, 
which suggests that it is avoidance of fever, and not hypothermia, that is 
neuroprotective [95].

The role of therapeutic hypothermia in acute stroke has been investigated 
in several studies. A meta-analysis of 101 publications and a total of 3353 
animals that examined the effect of therapeutic hypothermia after ischemic 
stroke found that therapeutic hypothermia after ischemic stroke reduces 
infarct size by 44% and neurobehavioral outcomes by 46% [100]. From a 
study on mice that underwent global cerebral ischemia by bilateral carotid 
artery occlusion with or without therapeutic hypothermia, it appears 
that the mechanism of hypothermia that limits infarct size is mitigating 
the ischemia-induced increase extracellular calcium-sensing receptors 
and the ischemia-induced decrease in gamma-aminobutyric acid-1B 
receptors (GABA-1B receptors), an effect that was particularly prominent 
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in the temperature-sensitive hippocampus [101]. A study of 390 acute 
stroke patients in Copenhagen showed that patients with hypothermia 
at admission had less severe strokes and lower mortality rates [12]. The 
Nordic Cooling Stroke Study (NOCSS), the most ambitious human 
randomized clinical trial assessing effects of hypothermia in acute stroke 
to date, intended to test the effect of temperature reduction to 35°C, but 
was terminated because of slow recruitment [100,102]. The NIH-funded 
Intravascular Cooling in the Treatment of Stroke-Longer tPA window 
(ICTuS-L) study tested the combination of hypothermia and intravenous 
tPA in acute ischemic stroke and found endovascular hypothermia 
after stroke with intravenous thrombolysis to be preliminarily safe but 
raised concerns about increased incidence of pneumonia [103,104] and 
decreased urine output [105] from therapeutic hypothermia. Currently, 
there is an ongoing European multi-center, randomized phase 3 clinical 
trial of therapeutic hypothermia plus best medical treatment in patients 
with acute ischemic stroke [106,107].

In TBI, therapeutic hypothermia has no demonstrated benefits and may 
be harmful. A prospective multi-center randomized trial of therapeutic 
hypothermia in severe TBI found that prophylactic hypothermia does 
not improve survival rates or functional outcomes but increases rates 
of complications, even though fewer patients in the hypothermia group 
had high intracranial pressure than in the normothermia group [65,108]. 
Three of four meta-analyses on therapeutic hypothermia after TBI found 
no benefit from therapeutic hypothermia [108-112]. Another meta-
analysis found that only Asian but not American population’s show 
decreased mortality from prophylactic hypothermia [113]. The Brain 
Hypothermia study (BHYPO), a multi-center randomized controlled 
trial of severe TBI patients, found no beneficial effects of prophylactic 
therapeutic hypothermia on TBI; only in young patients (≤ 50) with 
evacuated mass lesions did therapeutic hypothermia increase favourable 
outcomes [114,115]. A recent randomized controlled trial of mild 
therapeutic hypothermia that improved upon limitations of previous 
studies found no improvements in neurological outcomes or mortality 
from prophylactic therapeutic hypothermia for severe TBI [116]. A 
multi-center international trial of therapeutic hypothermia in children 
with severe TBI found that therapeutic hypothermia does not improve 
neurologic outcomes and may in fact increase mortality [108]. Another 
study of children with TBI in all eight PICUs in Australia and New Zealand 
and one PICU in Canada found no difference in outcomes at 12 months 
after injury from prophylactic hypothermia compared to normothermia 
[117]. A multi-center randomized controlled trial of prophylactic 
hypothermia in TBI (POLAR trial) at sites in Australia, New Zealand, 
and Europe is currently underway [118]. The National Acute Brain Injury 
Study-Hypothermia (NABIS-H) and National Acute Brain Injury Study-
Hypothermia II (NABIS-II) studies evaluated whether cooling before 
evacuation of traumatic intracranial hematomas protects against brain 
reperfusion injury and whether cooling before and after craniotomy was 
associated with improved outcomes [119,120]. The NABIS-H I study 
found some improvement in outcome of patients with hematomas and 
severe brain injury [119]. However, the NABIS-H II study did not show 
utility of hypothermia as a neuroprotective intervention for TBI; in fact, 
the NABIS-H II study was terminated early due to futility [120]. The 
recent Eurotherm study of therapeutic hypothermia (to 32°C-35°C) for 
intracranial pressure reduction after TBI was suspended out of safety 
concerns. Therapeutic hypothermia for patients with intracranial pressure 
over 20 mm Hg after TBI did not result in superior outcomes compared to 
standard treatment [121].

While a recent review of studies of a total of 1219 patients undergoing 
neurosurgery for a variety of reasons (from craniotomies for severe TBI to 
cerebral aneurysm clipping to hemicraniectomy for edema after cerebral 
infarction) found no harmful effects from induced hypothermia (32.5°C to 
35.0°C), it also found no evidence that induced hypothermia significantly 

reduced neurological disability or mortality [122]. Normothermia (36.5°C 
to 38.0°C) appears to be just as safe as hypothermia in neurological surgery.

Dysthermia: Is it Best Not to Be Too Hot or Too Cold?
Intuitively, most clinicians know that extreme spontaneous body 

temperature fluctuations, either too low or too high (dysthermia), are 
harmful. In a rabbit model of bacterial infections, the greatest chance of 
survival correlated with a mild fever compared to either normothermia 
or a high fever [123]. Similarly, in humans, a retrospective cohort study 
(n=636,051) involving more than 300 ICUs in Australia, New Zealand, 
and the UK demonstrated that the lowest risk of death for patients with 
infection in the first 24 hours occurred at a peak temperature between 
39°C–39.4°C [124]. Outside of the context of infection, both spontaneous 
hypothermia and fever after brain injury appear to confer a greater 
mortality risk than normothermia upon ICU admission [57]. In the 
context of cerebral pathologies, a retrospective cohort study of 45,038 
patients with TBI or stroke demonstrated that early temperature below 
37°C and above 39°C was associated with increased mortality [7]. In a 
prospective study of severe TBI patients, early temperature outside of the 
range of 36.5°C to 38°C was associated with a higher probability of death 
and poorer neurological outcome at 3-month follow-up [19]. 

Conclusions
Body temperature is one of the most tightly regulated homeostatic 

parameters in humans, but temperature abnormalities are frequently 
encountered in neurologically ill patients [6]. The net effects of early and 
spontaneous body temperature fluctuations associated with neurological 
illness likely depend on the underlying pathological process (e.g. infectious 
versus noninfectious), the physiology condition of patients (e.g. young TBI 
versus elderly stroke patients), the specific tissue vulnerabilities towards 
collateral injuries induced by temperature changes (e.g. CNS versus other 
organ systems), and magnitude and duration of temperature fluctuations. 

It is crucial to expand our clinical attention and research efforts to 
investigate the biological effects of the entire range of spontaneous body 
temperature fluctuations associated with CNS illnesses, particularly 
hypothermia. The CNS is particularly sensitive to temperature changes 
[23,24], and early and spontaneous brain and body temperature 
abnormalities are commonly observed in neurological patients [6]; 
therefore, temperature, as an independent therapeutic target variable, 
measurable even in the brain by noninvasive, indirect means such as 
tympanic temperature [46,125,126], warrants intense clinical attention. 
Collectively, available data do not yet define a clear framework for 
understanding how temperature fluctuations impact clinical outcomes. 
In addition, the therapeutic efficacy of targeted temperature management 
remains uncertain.
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