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Abstract
In the frontier of materials science, understanding of materials has been in multiple scales from macro, micro, to atomic levels. This is attributed 

to the advanced instrumentations such as SEM, TEM, XPS, XRD, as well as several other spectroscopic and metallographic analyses. Fe-Cr-
Ni based austenitic stainless steels have a diverse range of modern applications ranging from biomedical prostheses in human bodies, food 
processing, to chemical engineering and nuclear power generation. The outstanding properties of the nitrided steels have attracted extensive 
research activities attempting to obtain a clear image on the structural characteristics of the structure, including nano-scale heterogeneity of the 
expanded austenite phase resulted from atomic-level chemical or electronic interactions in the alloying system. This paper provides a review on 
the structural characterization of nitrided austenitic stainless steels, with an emphasis on the latest experimental findings through the use of these 
sophisticated analytical tools. In the final section, several possible aspects of future studies are discussed.
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Introduction
Austenitic stainless steel attracts wide applications for biomedical 

implants, medical devices, and pharmaceutical processes, because it is 
biomedically compatible, hygienic, corrosion resistant, easy to clean, and 
of low life-cycle costs [1-3]. As a class of iron based Fe-Cr-Ni ternary 
alloys, austenitic stainless steel has its principal physical and mechanical 
properties primarily from iron, whereas the chemical stability especially 
the anti-corrosion performance is owing to the chromium component 
which governs the kinetic process of the chemical degradation. Of course, 
nickel also plays an important role in stabilizing the austenitic phase 
and bringing about many other beneficial properties. According to the 
corrosion theory [4-6], austenitic stainless steel gains its extraordinary 
corrosion resistance in an oxidative medium owing to the immediate 
formation of a passive chromium oxide Cr2O3 film, which is chemically 
stable, structurally dense and therefore works as a barrier to greatly 
restrict further oxidation of the inner metallic matrix. Secondly, the high 
chromium content significantly increases the electrode potential of the 
ferrous matrix, leading to better resistance to electrochemical corrosion. 

In the field of health and medical services, austenitic stainless steel 
forms a family of important structural materials for numerous medical 
and surgical implants, tools, devices and equipment. It is of great value 
to improve the corrosion resistance and life-cycle performance. However, 
a major drawback of austenitic stainless steel is the low hardness causing 
very poor resistance to scratching and abrasive wear. To overcome this, a 
surface nitriding treatment is applied to generate a nitrogen-rich surface 
layer of much higher hardness, which consequently reduces scratching 
damages and abrasive wear. Nitriding processes started from the 
conventional gaseous surface thermo-chemical treatment, whereas great 
achievements have been made in plasma enhanced nitriding technologies. 
In particular, perhaps the most striking technical innovation in this aspect 
was the development of low-temperature plasma nitriding treatments, 
which brought about the formation of a single phase layer of nitrogen 
super-saturated austenite-like structure free from nitride precipitates. 

Such a low-temperature nitriding process offers both excellent oxidation 
resistance, at least equivalent to the bare austenitic stainless steel, and 
extremely good anti-wear property. For the plasma nitriding of austenitic 
stainless steels, major research interests have been allocated in the chemical 
interactions between nitrogen and the Fe, Cr and Ni components, the 
diffusion kinetics of nitrogen atoms in the austenitic matrix, and structure 
of the nitrided layers. 

In the structural characterization of low-temperature plasma nitrided 
austenitic stainless steels, breakthrough research has been reported 
beyond the aspects of crystallite grains, grain boundaries and lattice 
defects, in the attempts to understand the nitrided layers from the view 
of chemical bonding, atomic stacking structure and the interactions of 
valence electrons. These achievements resulted from the multidisciplinary 
nature of recent research, e.g., through the use of many advanced 
analytical tools, from electron microscope based secondary electron 
imaging, backscattered electron imaging, diffraction contrast (bright field 
and dark field) imaging, and phase contrast imaging, energy dispersive 
X-ray spectroscopic and electron energy loss spectroscopic analyses, to 
many other sophisticated microscopic, spectroscopic and diffractometric 
techniques. As a short review, this paper is only focused on selected 
readings of recent structural characterization, chemical and physical 
analyses of nitrided austenitic structure as well as the related plasma 
technology. In particular, most selected reference papers demonstrated 
comprehensive understanding of the nitrided structure depending on the 
employed instrumental techniques. Therefore, unlike many other reviews 
of similar scientific contents, we have structured the review in terms of 
the analytical means, e.g. from the very conventional analyses to the latest 
techniques. Although most initial experimental findings were evidenced 
in figures, curves, and tables, etc., the current review only provides a text 
based highlight of the findings in order to save space. However, we would 
recommend the relevant cited paper if one intends to find more details in 
any particular case. It is expected that this brief review could bring some 
indicative light to promote fundamental understanding of the nitride 
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structures, and could also be recommendable to the research in other 
surface engineering materials. 

Technological Aspects of Plasma Nitriding Processes 
Steel surface gas nitriding was primitively recognized by Machlet [7], 

who found that diffusion of nitrogen in iron or iron-based steels improved 
the surface properties in terms of high hardness, fatigue and wear 
resistance. Pye illustrated an iron-nitrogen equilibrium phase diagram to 
explain the solubility of nitrogen in iron at temperature range from 480 
to 680°C in which various phases of α-Fe, γ-Fe, or ε-Fe(N) were formed 
depending on an equilibrium temperature[8].

Early gas nitriding processes of steels were in principal similar to those 
reported in[7], where nitriding was performed in ammonia or ammonia 
with addition of hydrogen mixture in a vacuum chamber [9,10]. The 
nitrogen atoms were firstly dissociated from ammonia (NH3) at elevated 
temperature and transported to surfaces of those heated steel components. 
Thereafter a nitride layer could be produced with typical structures of 
a top compound layer dominated by ε-Fe3N1+y phase and an subsurface 
diffusion layer with mainly the γ-Fe4N1-x [11], in which the process 
temperature was described as a crucial parameter to control the formation 
of specific Fe-N phases according to Lehrer diagram of nitrogen activity 
vs. Temperature [12]. 

Traditional gas nitriding requires a high process temperature, e.g. 
500°C or higher, in order to dissociate ammonia (NH3) efficiently 
and to make those nitrogen atoms diffuse into the steel surface. This is 
obviously a disadvantage because high temperature leads to increased 
thermal expansion and would cause distortion of the treated steel parts. 
In addition, industrial gas nitriding has to concern problems arising 
from the use of ammonia, including the corrosion induced leaking of 
the steel based ammonia container and the generation of large amount 
of flammable hydrogen accompanying the decomposition of ammonia 
(NH3→ [N] + 3/2H2). 

Plasma nitriding is in principal still a ‘gaseous’ process. Unlike the 
traditional gaseous nitriding, however, it employs glow discharge plasma 
which can efficiently dissociate the gaseous atoms at a very low process 
temperature, e.g. high rate dissociation of nitrogen atoms from N2 glow 
discharge at gas temperature lower than 200°C as reported by Guerra [13]. 
Meanwhile, glow discharge plasma can effectively heat up the steel surface 
due to those energetic particles in plasma, which improves the diffusion 
or penetration of N atoms into the steel matrix. Berghaus exploited 
electric glow discharge technique for a nitriding process, in which glow 
discharged mixture of N2 and H2 was employed to heat up the steel and, at 
the same time, nitriding took place inside a steel gun tube to increase the 
hardness and wear resistance of the internal surface [14]. 

The conventional dc plasma nitriding was relied on bombarding by 
energetic particles in a gaseous glow discharge process. An industrial dc 
plasma process can be described according to a schematic diagram shown 
in Figure1, in which Ar or H2+N2 plasma is produced by a dc power 
unit. Through the applied high negative bias voltages, the steel parts for 
nitriding are immersed in the plasma with ion sheath (known as Child–
Langmuir (CL) sheath) formed around surfaces of each individual parts 
and there is also an anode dark space close to chamber wall. In such a 
system, bombarding of energetic particles is critical to control uniform 
nitriding. 

The treated parts can be treated as multiple cathodes that should be 
operated in abnormal glow discharge (as described in voltage-current 
diagram of Townsend glow discharge) so the plasma glow can fully cover 
all the surfaces of the parts to make uniform plasma surface treatment. If 
the parts are different in size or the distances of the parts are not the same 
from parts to anode wall, then the abnormal glow is difficult to form with 

uniform coverage on surfaces of the all parts because the characterisations 
of a glow discharge plasma are dependent on gaseous pressure as well as 
the size and distance of the separated cathodes. Glow discharges at some 
surfaces of the parts (especially small parts and parts with sharp edges, 
or parts with different surface contaminations) may go rapidly transition 
from glow to arc discharge that would cause damages on the surfaces of 
treated parts and it is in general very difficult to make a uniform plasma 
nitriding economically for industrial applications.

A significant improvement of industrial plasma nitriding process, 
known as active screen plasma nitriding, was made by Georges [15], in 
which a metal screen cage covering the parts under nitriding is biased by 
either a dc or pulsed high negative voltage whilst the parts are just floated 
or weakly biased by a low voltage. In this process, the cage serves as a main 
cathode to produce high dense plasma, which in turn heat up the steel cage 
to reach high temperature due to intensive ion bombardment. The parts 
are then immersed in the plasma and heated up due to thermal radiation. 
Active screen plasma nitriding process has been now widely interested 
for industrial applications to treat various types of steel component [16]. 

Thermodynamics and Kinetics in Nitrided Structure 
Formation 
Thermodynamics of a nitriding process

The thermodynamic system of steel under nitriding includes the steel 
itself and the nitriding atmosphere surrounding it. As a high potential of 
nitrogen is generated in the nitriding atmosphere in the form of mono-
atomic nitrogen species in gas nitriding or energetic nitrogen ions in 
plasma nitriding, the nitrogen species are motivated to immigrate into 
the steel in order to make the entropy of the whole system higher. When 
the inter-atomic interactions between nitrogen and the metallic atoms 
in the steel are considered, one has to take account both the occupation 
of nitrogen atoms in the steel crystalline lattice and the ionic bonds 
between nitrogen and the metal atoms. In other words, nitrogen exists in 
the structure of austenitic stainless steel either as an interstitial solute to 
dissolve in the austenite matrix or in a metal nitride phase. 

For the former, the atomic radius of nitrogen, 0.056 nm, is only 
slightly bigger than the radius of the γ-Fe octagonal vacancy (0.053 nm). 
This allows the formation of interstitial solid solution of high nitrogen 
content. Nitrogen has been reported to strongly stabilize the austenite 
phase by prohibiting the cementite precipitation and preventing austenite 
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Figure 1: Schematic diagram of an industrial dc plasma nitriding process.
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to ferrite transformation. In brief, super saturation of nitrogen results in 
remarkable expansion of the austenite lattice, which has been evidenced 
by numerous results of X-ray diffraction experiments. Nitrogen alloyed 
austenitic stainless steels were reported to show increased strength and 
fatigue lifetime [6,17]. It also improves the corrosion resistance regarding 
localised pitting, crevice corrosion, inter granular corrosion, and the 
stress corrosion cracking failure [6,18-23]. These advantages are especially 
promising if the low hardness and or the weak corrosion resistance of 
austenitic steels are concerned, e.g. for some load-bearing parts working 
in a Cl-ion rich chemical environments. 

For the latter, nitrogen as the 7th element in the chemical periodic table 
has five free electrons in its outer shell, and therefore intends to attract 
free electrons of chromium and iron to form chromium nitride and 
iron nitride. This behaviour dominates the nitride layers, which is to be 
discussed in details below, e.g. the stronger Cr-N bonds than the Fe-N 
and Ni-N. 

Kinetic growth of nitriding layer
In a nitriding process, a case depth of nitrogen-rich surface layer is 

formed either as a supersaturated austenitic solid solution, known as 
expanded austenite γN (or S-phase as called by some authors [24,25]), 
or a compound layer dominated by chromium nitride, or a mixture of 
nitride precipitates dispersed in a ferrite matrix. A recent review paper 
has provided systematic description of the expanded austenite phase 
[25]. Moreover, the expanded austenite phase has been found to be 
heterogeneous in nano-scale because of the preferential Cr-N and Fe-N 
bondings. When the kinetic condition is met, the inward nitrogen atoms 
or ions combine preferentially to chromium to form chromium nitride 
compound, either as fine precipitates or in large grain sizes. This results 
in precipitation hardening or strengthening of the nitride layer, but also 
triggers the loss of corrosion resistance due to the reduced chromium 
concentration in the matrix or even the formation of ferrite phase.

Experimental measurements of the nitrogen concentration depth 
profiles contribute to understanding of the thermodynamics and kinetics 
of a nitriding process. Several sputtering based spectroscopic analyses 
are available to measure the concentration and depth profile of nitrogen 
in nitrided surfaces, including Auger electron spectroscopy (AES) [26-
28], Glow discharge optical emission spectroscopy (GDOES) [29-34], 
secondary ion mass spectroscopy (SIMS) [35], and nuclear reaction 
analysis [32, 36]. As an example, Wu et al. employed Auger electron 
spectroscopy to analyse the depth profiles of nitrogen concentration of 
AISI 316L steel sample which were gas-nitrided for 20 hours at different 
temperatures of 350°C, 420°C, 440°C and 450°C [28]. On the 350°C 
nitrided surface, the maximum nitrogen concentration was approximately 
15% with a very small nitrogen penetration depth less than 1 µm. The 
nitrogen penetration depth increased to 5 µm, 8 µm and 15 µm when 
the nitriding temperature was increased to 420°C, 440°C and 450°C, 
meanwhile the nitrogen concentration was also increased to 17% at the 
highest nitriding temperature. In addition to these profiling methods, 
energy dispersive X-ray (EDX) spectroscopy has been utilized to measure 
the nitrogen depth profile when working along with an analytical scanning 
electron microscopy (SEM) on a cross-section of nitride steel [37]. Figure 
2 shows such a cross-sectional EDX profile of nitrided AISI 316 steel, 
noting the maximum nitrogen concentration at the surface as compared 
to the decreasing concentration towards the interface. 

The kinetic process of surface nitriding treatment can be described as 
following. A nitrogen-rich media is provided inside a nitriding chamber, 
either in a gaseous or salt-bathing media, or in a plasma enhanced 
environment. The nitrogen atoms are chemically absorbed on the steel 
surface and subsequently penetrate into the austenite lattice by entering 
the octagonal vacancies. In many cases, a thin layer of chromium-iron 

nitride compound is formed as a result of the absorption [11,33,38,39]. 
Then with increasing time at a certain temperature, anitrogen-enriched 
layer is formed and followed by the nitriding penetration. 

Two modes have been proposed to describe the nitriding penetration, 
namely the diffusion driven mode and the trapping-detrapping mode. 

The concentration dependent diffusion mode considers that, the inward 
diffusion is thermodynamically driven by the concentration gradient of 
nitrogen along the depth direction. Whereas nitrogen atoms occupy the 
octagonal vacancies of the f.c.c. lattice, the diffusivity obeys the related 
diffusion kinetics of interstitial atoms in f.c.c. metals. For example, the 
diffusion coefficient D0 and activation energy Q of nitrogen in austenite 
are 3.3 × 10-6 m2·s-1 and 144 × 103 J·mol-1 respectively, comparing to 
the corresponding values of 4.6 × 10-6m2·s-1 and 75 × 103 J·mol-1 for the 
diffusion of nitrogen in ferrite [40]. Mandl and Rauschenbach reported 
that, nitrogen plasma immersion ion implantation of austenitic stainless 
steel is characterised by a high nitrogen content of up to 20% [41]. The 
concentration dependent diffusion coefficients were calculated to explain 
the unusual fast diffusion. Christiansen and Somers reported numerical 
simulation and experimental measurement of concentration dependent 
diffusion coefficient of nitrogen in expanded austenite through the 
conduction of a denitriding experiment of thin initially N-saturated 
coupons in a gas mixture of ammonia and hydrogen [42]. Using the 
reported methods, they found an accurate approximation of the actual 
diffusivity of nitrogen in expanded austenite. 

The trapping-detrapping mode derived from the different outer shell 
electronic statues of the three major metal components of austenitic 
stainless steels, and states that nitrogen atoms intend to bond preferentially 
to the Cr atoms because of stronger N-Cr chemical bond than the N-Fe and 
Ni-N bonds [33,43,44]. Then the diffusion under the influence of dynamic 
trapping and detrapping of inward nitrogen atoms controls the increase 
of the nitrided depth. The diffusion and detrapping activation energies of 
nitrogen in austenite stainless steel at around 400°C were reported to be 
1.1 and 1.45 eV respectively, being in good agreement with experimental 
nitrogen profiles [43]. In another paper, Moskalioviene and co-workers 
reported that, the nitrogen detrapping activation energy is 0.28 eV, and 
the diffusion coefficient and the diffusion pre-exponential factor at 400°C 
are 4.80 × 10-12m2·s-1 and 0.837 × 10-3 m2·s-1 respectively [33]. 

Influence of processing parameters on the kinetics of plasma 
nitriding

The kinetic growth of nitride layer is influenced by temperature and by 
the applied nitriding potential parameters, including the nitrogen partial 

 

35 μm

Figure 2: SEM-EDX linear profile of N-Kα in a polished cross-section 
of plasma nitride AISI 316 steel. The backscattered image indicates the 
thickness of the nitride layer to be 35 µm.
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pressure in gaseous nitriding and the energetic nitrogen ion flux in plasma 
nitriding. Wu et al. reported that, the depth of nitrogen-enriched layer 
of gas-nitrided austenitic stainless steel (ALSI 316L) increased with the 
increase in the process temperature, the nitriding time, or the nitrogen 
activity coefficient [28].

For the influence of temperature, Zhang and Bell reported that, if the 
nitriding treatment is conducted at a moderate temperature lower than 
450°C, a single phase layer of expanded austenite is formed [45]. On the 
other hand, plasma nitriding of Cr-Ni austenitic steel at 535°C-785°C 
resulted in a multi-phase nitrided layer (including ferromagnetic ferrite 
and CrN nitride) [46], which subsequent decreased in corrosion resistance 
despite the increased wear resistance. 

Moller found that, in plasma nitriding of an austenitic stainless steel 
which naturally has a thin but dense Cr2O3-type oxide film on its surface, 
efficient nitriding required the transmission of the implanted ions through 
a surface oxide layer [44]. A balance is achieved between ion sputtering and 
re-oxidation from the residual gas for ion energies of certain plasma and 
gaseous conditions. In many cases, a gradient of nitrogen concentration 
can be obtained from the surface to certain depth. Lei reported that, in 
plasma nitrogen ion implantation, a nitriding case layer obtained at 380°C 
and 0.63 mA·cm-2 showed a maximum nitrogen concentration of 32 at% 
in a depth of approximately 2 µm, followed by a gradual decrease of the 
N concentration in the following depth [27]. The nitriding case depths 
increased from 1 µm, 12 µm to 17 µm when the nitriding temperature 
was increased from less than 300°C to the 380°C and 460°C. In addition, 
the applied N ion flux rate showed more pronounced influence on the 
penetration depth and the peak concentration at low process temperature, 
e.g. increase of the case depth from 1 µm to 5 µm and the maximum 
nitrogen concentration from 22 at% to 32 at% when the nitrogen dos 
rate was increased from 0.44 to 0.63 mA·cm-2. Similar gradients of 
decreasing nitrogen concentration have also been reported by other 
researchers [33,36,37]. Asgari et al. measured the nitrogen concentrations 
at different depths of pulsed plasma nitride 316L stainless steel, and 
found decreased nitrogen concentration from 23.35% at the as-nitrided 
surface to 17.71 and 15.47 at% after 3 and 15 seconds of electro-polishing 
respectively. The enriched nitrogen concentration was associated with the 
formation of a single-phase expanded austenite with a lattice expansion 
of 5-12% for N=10-20 at%, and high indentation hardness of 8-10 GPa. 
Meanwhile, a cross-sectional linear scanning energy dispersive X-ray 
spectroscopy showed a profile of nitrogen concentration in a total depth 
of approximately 9 µm [37]. 

Structural Characterizations of Nitrided Austenitic 
Stainless Steel 

Despite its very small thickness, a nitrided surface layer is extremely 
rich in structural characteristics, having extremely complicated structure. 
In particular, the obtained expanded austenite is thermodynamically 
meta-stable, supersaturated with interstitial nitrogen, precipitate-free but 
containing Cr-N and other short-range atomic orders. Understanding of 
the structural features has been attributed to the scientific and technical 
advances of materials characterization instruments. It is only by means of 
multi-disciplinary analytical research that the chemical, crystallographic 
and metallographic nature of the nitride layers could be understood. On 
the other hand, each employed analytical method can only provide a view 
of the analysed object in a selected window.

A typical example of such multi-technical experimental research can be 
found in the publications of Martinavicius and co-workers. In Ref. [36], 
the authors investigated the structure of a low temperature nitrided layer 
using a package of analytical tools including XRD, GDOES, field emission 
microscopy, conversion electron Mossbauer, X-ray absorption near edge 
structure and extended X-ray absorption fine structure spectroscopes. 

They found that the XRD homogeneous expanded austenite phase is 
microscopically heterogeneous because of the different local chemical 
environments of the Fe, Cr and Ni components. It consists of nanometric 
CrN precipitates dispersed in an N-saturated Fe4N-like matrix. In their 
latest paper [47], a new instrumental technique, atomic probe tomography 
(APT) was employed to investigate the nano-scale heterogeneous 
distribution of Cr in a layer of expanded austenite. In the expanded 
austenite region studied, approximately 65 at% of Cr is detected as CrN2+ 

molecular ions, indicating interstitial-substitutional Cr-N bonds and the 
existence of CrN-like precipitates. Cr-N enriched bands, separating from 
each other at a distance of approximately 4.5 nm, were found to have 34.4 
at% N, 30.8 at% Cr and only 3.6 at% Ni imaged along with Cr-depleted 
regions having average distances of ~4.5 nm. Between the Cr-N rich 
bands, the Cr and N are depleting (17.1 at% and 20.6 at% respectively) 
and would form Fe4N as the local environment of Fe is very similar to γ’-
Fe4N. Therefore, the content of this chapter is arranged according to the 
characterization techniques. 

Structural characterizations by indentation techniques
The most straight forward characterization of nitrided surfaces is 

micro hardness testing and the depth-sensitive nanoindentation. Whereas 
the former can be applied to determine the nitriding induced surface 
hardening [31,48-51] and the depth profile of hardness in the nitride 
cross-sections [51,52], the latter is also capable of measuring the elastic 
modulus [53,54]. Figure 3 shows the depth profiles of Knoop micro-
hardness of plasma nitrided AISI 316 steel samples out of the authors’ 
recent research. More results from published papers are described below.

Yasumaru et al. measured hardness of HV 1500 of AISI 304 austenitic 
stainless steel in a nitrided depth of 15µm as compared to the soft austenitic 
matrix of HV 300 [55]. In Ref. [56], AISI 316L austenitic stainless steel was 
nitrided through intensified plasma-assisted nitriding processes under a 
range of bias voltages 500V- 2,000V, cathode current densities 0.75 - 2.5 
mA·cm-2 and the associated temperature measured from 400 to 750°C, 
which resulted in increased surface hardness from HK0.1 285 of the un-
nitrided steel to HK0.1 930 - 2250 depending on the process conditions. On 
the sample nitrided at 400°C, nano-indentation determined a maximum 
hardness value over 15 GPa at the depth of ~4 µm, which gradually 
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dropped to about 5 GPa at the depth of 12 µm approaching the hardness of 
the austenitic matrix. Meanwhile, the measured Young’s modulus seemed 
to be independent of the depth position, ranging between 225 and 300 GPa 
due to data scattering. Fossati et al measured the surface microhardness 
values of HK0.1 1300-1605 on glow-discharge nitrided AISI 316L stainless 
steel samples accompanying the increase in nitriding temperature from 
703K to 773K and the associated increase in the nitrides layer thickness 
from 10 to 47 µm [49]. 

  Wang et al. found that, the case depth of DC plasma nitrided AISI 
304 steel increased almost linearly from 5 to 12 µm along the increase of 
nitriding temperature from 350 to 500°C, whereas the maximum hardness 
(HV0.1 1000-1200) was obtained at the nitriding temperature 460°C [57]. 
Stinville et al. developed a technique of 2-D nano-indentation matrix 
measurements, SEM EBSD imaging and stress-less electro-polishing, to 
measure the 3D anisotropic changes in hardness and elastic modulus of 
plasma nitride 316L polycrystalline stainless steel and found that, the E 
modulus and hardness measured on individual grains depend strongly 
on their crystalline orientations [53,54]. The E modulus and hardness 
values of the nitride steel were 220-240 GPa and 13-16 GPa respectively 
depending on the crystalline orientation, comparing to the E modulus 
(190-215 GPa) and hardness (1.8 - 2.2 GPa) of the un-nitrided steel. In the 
samples prior to nitriding treatment, the <111> orientated grains showed 
the highest E modulus and hardness whereas those <001> oriented show 
the lowest. After plasma nitriding treatment, however, a reverse rank of 
the hardness and E modulus values was obtained, i.e. the <001> oriented 
grains showed the highest values and the <111> oriented the lowest. 

In another paper, the nanoindentation determined E modulus was 
reported to be 162 GPa [58]. Asgari et al. measured a nano-indentation 
hardness profile obtained in a cross-section of an AISI 316L stainless 
steel being pulse plasma nitrided at a temperature lower than 440°C. The 
cross-sectional hardness values showed good correlation to the profile of 
nitrogen concentration [37]. 

Structural characterizations by optical microscopy
Optical microscopy has been widely applied to observe nitrided 

austenitic stainless steels, either on the changes in surface morphology due 
to anisotropic sputtering in plasma nitriding [52,55], or on the thickness 
and structural features on polished and chemically etched sections 
[30,31,49,50,55,59-61]. It has sufficient spatial resolution to image, 
on polished and chemically etched cross-sections; the nitrided layers 
provided that most of these layers are thicker than a few micrometers. 

In addition, cross-sectional optical microscopy has been frequently 
employed to detect nitride precipitates within a nitrided case, in which 
the single phase of expanded austenite shows feature-less ‘white’ contrast 
because of its inertness to chemical etching and the areas of nitride 
precipitates always exhibit fine features of ‘grey or black’ contrast for the 
decreased resistance to the applied chemical etching. In Ref. [49], cross-
sectional optical microscopy showed that the nitrided layer generated by 
glow discharge nitriding at 430°C was only 10 µm thick and exhibited 
feature-less white contrast indicating a single phase expanded austenite. 
In contrast, the 500 0Cnitrided layer was four times thicker and showed 
dispersed black features suggesting precipitation of nitrides. Similar 
application of cross-sectional optical microscopy was also included 
[51,61]. 

Furthermore, optical microscopy can provide more micro structural 
features if a cross-sectional sample is prepared in a small oblique angle, 
e.g. 5 degree [38]. On the oblique cross-sections, Sun and co-workers 
observed a very thin compound layer (γ’-Fe4N, less than 0.5 µm thick) 
on the top of a nitrided 316 steel as well as fine precipitates at the 
expanded austenite grain boundaries. Similarly, such cross-sectional 
sample preparation was also applied in SEM observed samples of nitrided 

austenitic steel [62], in which the authors reported detailed observation of 
the interface, between the S-phase and the austenite substrate, as a narrow 
band of an unknown phase. This finding is interesting as in many optical 
microscopy observations, such interfaces (after chemical etching) are black 
lines. Perhaps more research is required to find details of this particular 
region. 

Structural characterizations by analytical scanning electron 
microscopy

Comparing to optical microscopy, scanning electron microscopy 
has much more powerful spatial resolution. Meanwhile, advanced SEM 
instruments also work as a platform of chemical analyses by means of 
backscattered electron (BSE) imaging and energy dispersive X-ray (EDX) 
spectroscopic analysis, seeing (Figure 2) as an example. The material 
analysed in (Figure 2) is a high-power pulsed plasma nitrided austenitic 
stainless steel AISI 316. The cross-sectional SEM image was made at the 
BSE mode on a 6%-nital etched section to show the multi-phase structure 
of the nitrided layer. The EDX linear scan shows qualitatively the profile of 
nitrogen intensity (the characteristic X-ray N-Ka) in the whole thickness of 
the nitrided layer. In SEM imaging, the increased spatial resolution improves 
significantly the observations of nitriding induced surface morphological 
changes [48,55,56,61,63-66] and the cross-sectional structural features 
of nitrided cases [33-35,48,51,57,61-64,67-69]. More recently, a special 
SEM based diffractographic and metallographic technique, called electron 
backscattered diffraction (EBSD), has been introduced in structural 
characterization of nitride steels. EBSD technique is applied along with 
other analyses to investigate the anisotropic properties of polycrystalline 
austenitic steels [32,37,54,65,66].

In [32,65], SEM EBSD crystallographic imaging was applied to the 
surface of a 316L polycrystalline austenitic stainless steel before and after 
a plasma nitriding treatment. The nitrding treatment was found to lead 
to evolution of the orientation of the austenite grains, which favours 
enhanced <001> and <111> texture components. The orientation evolution 
was related to nitriding induced plastic deformation, e.g. high density slip 
bands observed on the nitride surface. In extreme case, short cracks were 
observed in some grains. Similar SEM-EBSD analysis was also reported 
[37], where the variation of crystalline orientation from the surface to 
different depth within a nitrided grain was claimed to be related to a 
gradient of nitrogen concentration. The nitrogen gradient was evidenced 
by a cross-sectional SEM-EDX line scan. 

Cross-sectional SEM EBSD techniques have been applied to investigate 
the effect of the austenite crystalline orientation on the nitriding kinetics. 
In Ref.[66], SEM EBSD imaging showed that the local nitrogen penetration 
depth was not identical in different austenite grains. Similarly, Wu et al 
found that, the largest case depths were in the grains with their surface 
normal to a <100> direction and the smallest depths were in the grains of 
<111> direction [28]. 

Structural characterizations by X-ray diffraction
In 1986, Ichii reported in the first time an XRD pattern of low 

temperature (400°C) nitrided austenitic stainless steel, in which the five 
diffraction peaks detected were not listed in the ASTM index. Instead, the 
peaks shifted to lower angles with respect to the corresponding austenite 
peaks. Thereafter the unknown nitride structure was named as ‘S-phase’. 
XRD techniques were then also employed by other researchers to analyse 
many similar low-temperature nitrided austenitic steels and, mainly 
according to the results, the unknown nitrogen-supersaturated phase was 
also called ‘expanded austenite’ or N-expanded solid solution (γN) for its 
significant lattice expansion as compared to normal austenite in the Fe-Cr-
Ni alloys [70,71], or ‘m-phase’ for the detected tetragonal lattice similar to 
martensite [72,73]. 

X-ray diffraction (XRD) has been the mostly used structural 
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characterization of nitrided austenitic stainless steels since the initial 
reports of this topic in middle 1980’s [24,45,46,61]. In brief, major 
applications of XRD analyses include the following aspects: 

1.	 Peak broadening indicating intensified lattice distortion in expanded 
austenite [30,48,55,67,74]; 

2.	 Confirmation of the temperature conditions for the formation of 
single phase expanded austenite[27,34, 36,37,49-52, 56,57,59,67,75];

3.	 Quantitative measurement of lattice expansion of the new phase, e.g. 
preferentially more expansion of the (200) plane than other crystal 
planes [28,35,37,39,48,55-56,74,76,77]; 

4.	 Residual stresses arising from the nitrogen super saturation [38,75]. 

XRD analyses provide structural details of expanded austenite. One 
typical approach was to study the variation of crystalline parameters at 
different depths of a nitride surface layer, by acquiring diffraction patterns 
at a series of electro-polished depth positions [55,77]. It was found that, 
the (111) diffractions exhibited more pronounced shifting than the 
(200) diffraction as varying depths. Thus, the expanded austenite was 
determined to have a face centre tetragonal (f.c.t.) structure, e.g. with 
estimated lattice dimensions of a=0.393 nm, c=0.380 nm, and c/a=0.965. 
Interestingly, such f.c.t. structure was not observed on other nitrided 
surfaces, including other Cr-free austenitic steels in the Fe-Ni and Fe-Mn 
systems. Similar XRD analyses were also published in [27,38] on several 
low-temperature nitrided austenitic stainless steels. However, the authors 
considered the newly formed S-phase to have cubic lattice structure and 
attributed the tetragonal variation of the cubic lattice to the gradually 
enhanced residual compressive stresses and stacking defaults. Moreover, 
Lei also detected XRD and TEM-SAD evidences of strain- and nitrogen-
induced h.c.p. martensite N phase in the S-phase layer when the nitriding 
temperature was as low as 280°C [27].

In Ref [48], the authors found that the XRD peaks of the (200) and (111) 
planes revealed different values of the lattice expansion, namely 3.9% for 
(200) plane and 2.3-2.7% for other lattice planes, which were related the 
estimated nitrogen content of 17.31 at% and 10.37-12.20 at% respectively. 
The orientation dependent expansion has also been recognised by many 
other researchers. However, because of the high residual stresses, it was 
impossible to accurately determine the lattice parameter of the expanded 
austenite before the work of Christiansen and Somes [78]. In that paper, 
the investigators applied XRD analysis on two specially prepared powder 
samples (stress-free) of gas-nitrided austenitic stainless steel AISI 316, and 
subsequently determined the cubic lattice parameter to be 0.38651 nm 
and 0.38869 nm respectively for the two samples nitrided at different gas 
partial pressures. In addition to approving the FCC structure, the XRD 
work also revealed the effect of stacking faults on the deviations of the 
XRD line profiles. In Ref. [75], the authors reported comprehensive XRD 
characterization of an AISI 316L steel nitrided under several temperatures 
of 350°C, 400°C and 500°C. Considering the overlapping and broadening 
diffraction peaks, e.g. in the range of the (111) and (200) diffractions of 
the S-phase, they applied a method of peak de-convolution and predicted 
possible presence of several nitride phases in the obtained nitrided 
layers and confirmed the predictions with simultaneous experiments of 
conversion electron Mossbauer spectroscopy (CEMS). Compared to the 
lattice parameters of the substrate austenite (aγ = 0.3602 nm) and the iron 
nitride (aFe4N = 0.3774 nm), the S-phase showed an expanded parameter 
aS= 0.3927 nm. Similar to this, the authors in Ref. [79] also confirmed 
coherent diffraction of CrN nitride within the matrix of S-phase by means 
of diffraction peak Rietveld refinement and extended X-ray absorption 
fine structure (EXAFS) analysis. 

In Refs. [32,33,65], XRD analyses were employed to investigate 
the evolution of nitrided structure with increasing time in the 400°C 

plasma nitriding of the AISI 316L steels. In addition to the pronounced 
broadening of the (111), (200) and other peaks, the as-measured lattice 
parameters were found to increase with the nitriding time until it became 
stabilized after reaching a certain thickness, e.g. after 9~10 hours of 
nitriding. Very recently, Manova et al. reported in-situ XRD patterns 
obtained during the ion beam nitriding of austenitic stainless steel AISI 
316Ti at a low processing temperature at 400°C for a nitriding times up 
to 80 minutes [34]. The observed progressive shifting of the (111) and 
(200) diffraction peaks is consistent to those being observed by other 
researchers [32,33,61,65]. 

Structural characterizations by transmission electron 
microscopy

Transmission electron microscopy (TEM) possesses the most powerful 
spatial resolution down to nano/atomic scale. TEM is able to show 
structural features from micro- to nano-scales, such as dislocations, twins 
and stacking defects, and extremely small volumes of fine precipitates 
which cannot be detected by other techniques describe above. High 
resolution TEM has even imaged the ordered distribution of nitrogen 
interstitial atoms within the anti-phase domains. It also serves as a platform 
of multi-functional crystallographic, micrographic and chemical analyses. 
Considering the effect of nitrogen-concentration-dependent S-phase, 
combined TEM imaging and selected area electron diffraction (SAED) 
analysis has been applied to determine localised lattice expansion and to 
recognize the anti-phase domains of ordered nitrogen occupation in the 
f.c.c. octagonal vacancies. However, a special issue, or an experimental 
difficulty, is the preparation of thin foil samples for TEM observation. 
TEM samples of nitrided steels are prepared by ion beam milling, either 
through back-thinning to obtain a TEM thin foil of the outmost nitride 
surface, or through cross-sectional thinning to observe structural features 
across whole depth of a nitride layer, the latter including the latest SEM-
based focused ion beam (FIB) thinning. 

A typical example of comprehensive TEM studies of low temperature 
nitrided austenitic stainless steels is the findings of nano-scale anti-phase 
domains in the single phase of expanded austenite, i.e. through the use of 
electron diffraction, dark field imaging and high resolution lattice imaging 
[80,81]. Unlike an ordinary interstitial solid solution phase, selected area 
diffraction analysis of the the nitrogen-supersaturated austenite showed 
extra weak diffraction spots in addition to the diffraction spots of the f.c.c. 
lattice. Then dark field imaging illuminated using a weak diffraction spot 
showed sub-granular domains and clear boundaries between them. Such 
anti-phase domains were observed only in the outmost surface region 
of the nitride depth and disappeared at a depth of 500 nm. The anti-
phase domains and anti-phase boundaries were reported to arise from 
ordered nitrogen distribution in the f.c.c. lattice. Meanwhile, quantitative 
measurement of the SAD patterns suggested more pronounced lattice 
expansions in the outmost surface region (5.4%) than the sub-surface 
region (3.3% at 500 nm sub-surface) as compared to the substrate 
austenite. Similar short-range ordered domains as well as stacking faults 
and twins were also observed by Stroz and Psoda in plasma nitride 316L 
steel [82].

In Ref. [26], the authors reported TEM bright field micrographs and 
selected area diffraction analysis of an 18Cr-9Ni-Ti austenitic stainless 
steel plasma nitride at 560°C for five hours. The observed outmost nitride 
surfaces contained sub-micron scale ferrite grains. In Ref. [27], the same 
austenitic steel grade was plasma nitriding for four hours at different 
temperatures in the range 280-480°C. TEM observations confirmed the 
formation of single f.c.c. γN phase, with dense dislocations and stacking 
faults, at the temperature range 300-400°C, free from any nitride 
precipitates. In contrast, a mixture of disordered f.c.c. γN, ordered f.c.c. 
γ’-Fe4N, and h.c.p. ε’N phase was observed when the steel was nitride 
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at a lower temperature 280°C. In Ref.[67], the authors compared the 
structures of nitrided AISI 304 steel being plasma nitride at 400°C and 
500°C. Plasma nitriding at 400°C was found to produce a single phase of 
expanded austenite having dense dislocations and stacking faults. In the 
sample being nitrided at 500°C, laminated CrN and ferrite structure was 
observed. In Ref. [48], SAD patterns suggested Cr2N- and Fe2N-like fine 
precipitates in the expanded austenite matrix of 400°C plasma nitrided 
AISI 304 steel. Similar to this, TEM-SAD analyses were also reported to 
show the presence of fine carbide or nitride precipitates in plasma ion-
treated austenitic steels [31,35,68].

The first results of cross-sectional TEM of plasma nitride austenitic 
stainless steels were published in Refs. [76,80]. In Ref. [80], a single phase 
f.c.c. γN was confirmed in an austenitic stainless steel being plasma nitride 
for onehour at 400°C. In another case of similar nitriding, however, Ref 
[76] showed a 100 nm thick top layer of CrN+ ferrite although the majority 
of the 1.7 µm thick nitride layer exhibited a single γN phase. 

So far, the conventional characterizations highlighted above provide 
extensive understanding of the nitride austenitic stainless steels from 
general aspects of materials science, i.e. regarding the nitride layer as a 
homogeneous structure, although limited results of TEM analysis have 
brought a little insight into their heterogeneous nature. More details of 
experimental findings on the heterogeneity of low temperature nitride 
austenitic stainless steels are reviewed below. 

Structural characterizations by atomic (magnetic) force 
microscopy

Magnetic force microscope (MFM) is a special variety of atomic force 
microscope (AFM), which uses a magnetized stylus to make 2-dimensional 
scan over an objective surface so that the magnetic structure of the 
scanned area can be re-constructed at high magnification. 

In Ref.[76], the surface of at 400°C plasma nitrided AISI 316 steel, 
having XRD approved single phase of expanded austenite was analysed 
by AFM and MFM. Whereas the AFM image showed coarse equaxial 
grains and parallel slips within every grain, MFM showed that each grain 
contained tens to hundreds of fine magnetic domains. 

Similar MFM analyses of nitride austenitic stainless steel samples 
were reported in Refs.[74, 83].MFM imaging on polished cross-sections of 
nitrided steel samples revealed that such sub-grain magnetic domains 
appeared only in the outer part of a nitride layer, i.e. where the nitrogen 
supersaturation is higher than the inner part as confirmed by SEM-
EDX linear scans. The magnetic domains extended from the outmost 
nitride surface to certain depth well away from the front of the nitrogen 
penetration. Ref. [83] measured that the transition from the outer 
ferromagnetic region to the inner paramagnetic region referred to a 
nitrogen concentration of approximately 14 at%. In the MFM images 
shown in Ref.[74], the magnetic domains exhibited elongated cellular 
patterns within each original austenite grain and the orientations of the 
domains in nearby grains differ from each other. 

By its nature, the contrast in MFM imaging reflects only to the 
magnetic-field gradient detected in the examined area. The paramagnetic 
to ferromagnetic transition occurs by two mechanisms, namely, the 
rearrangement of 3d electrons after changing FeCrNi atomic distances 
and the formation of metallic nitrides [36]. In the nitride FeCrNi stainless 
steel, the induced ferromagnetism implies the dominant Cr-N interaction 
which removes the Cr 3d electrons from the metal alloy valence band 
and leaves ferromagnetic Fe and Ni [83]. Moreover, the magnetic domains 
observed suggest heterogeneous distribution of the Cr-N bonds inside the 
nitrided austenite. 

Structural-chemical characterization by Mossbauer 
spectroscopy

Mossbauer spectroscopy is a powerful tool in probing the variation in 
the local environment of iron atoms in ferrous alloys [84-88]. Accordingly, 
it is capable of detecting the atomic and electronic interactions between Fe 
and other alloying elements, such as new phases and short-range ordered 
clusters existing in a nitrided austenite. 

The published papers on Mossbauer spectroscopic analyses of nitride 
stainless steels have few up to date. In Ref. [89], the authors measured 
the variation of CEMS patterns of room-temperature ion implanted AISI 
304 stainless steel as a function of the introduced ion dose. They found 
that, the sample treated at a low dose exhibited features from both the 
paramagnetic austenite substrate and a new phase of interstitial nitrogen 
sold solution (γN-expanded austenite). In contrast, ion implantation 
at higher dose resulted in the formation of a ferromagnetic compound 
ε-Fe2+xN. In Ref [75], CEMS analysis of a series of AISI 316L stainless steel 
samples nitrided at temperatures from 350°C to 500°C revealed detailed 
hyperfine parameters of the resultant structures. Whereas the un-nitrided 
316L steel exhibited quadruple splitting and isomer shift parameters of 
the austenite phase, the nitrided samples showed hyperfine parameters of 
several phases including both ferromagnetic and paramagnetic expanded 
austenite γN, two types of iron nitrides, and two types of ferrite. In another 
paper [88], CEMS and convention X-ray Mossbauer spectroscopy 
(CXMS) were applied to analyse AISI 316 austenitic stainless steel 
samples subjected to a laser nitriding or carburizing treatment, with the 
resultant nitrogen content of 8.5 at% and carbon contents of up to 5.8 at% 
respectively. The spectra revealed three sites for the Fe atoms with different 
local environments. The hyperfine parameters of Fe-N austenite and 
Fe-C austenite were strongly dependent on the contents of the interstitial 
elements and their distributions cannot be unambiguously described with 
respect to random and ordering modes. The experiment results clearly 
indicated a weak attractive interaction between the nitrogen interstitials 
and a stronger repulsive interaction between carbon interstitials. 

From these descriptions, however, one may have noticed the drawback 
of Mossbauer spectroscopy in analysing interactions between nitrogen 
and the alloying elements of stainless steels other than the base element 
Fe. For example, CEMS failed to find any evidence of chromium nitride, 
either in the form of crystalline CrN or as short range ordered clusters 
or precipitates. Because the coexistence of Fe, Cr and Ni atoms in the 
same crystal structure, the implanted nitrogen atoms/ions would causes 
electronic changes in the existing valence configurations and leads to the 
formation of new bonds or modification of the existing ones. 

Chemical analyses by X-ray photo-electron and Auger-electron 
spectroscopic techniques

XPS and AES have been extensively applied in the chemical 
compositional and structural analyses of nitride cases. In addition to 
the determination of nitrogen profiles as mentioned early, XPS serves 
as a major tool in providing precise separation of the chemical binding 
energies, e.g., in the determination of chemical bonds existing in a nitride 
structure. 

Lei and Zhu [90] applied AES and XPS to study the expanded austenite 
phase formed on plasma nitride 18-8 austenitic stainless steel and found 
that, all the chromium and part of the iron were in the nitride state and all 
the nickel was in metallic state. As compared to stoichiometric nitrides, 
the nitrided phase contains weaker Cr-N ionic-type bonds and stronger 
Fe-N ionic-type bonds. Ref.[91] reported that the main N 1s peak fitting 
components in a room-temperature plasma nitrided 316 austenitic 
stainless steel can be described as CrN (396.9 eV) and Cr2N (397.6 eV). 

Furthermore, the development of high energy XPS and AES analyses 
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provides more informative signals to study the local charge variation of 
an alloy system. In Ref. [92,93], extensive XPS and AES analyses were 
undertaken on several Cr-Ni alloyed steels to investigate the local charge 
variation phenomena taking place at the atomic level, which was claimed 
to have dominant effect on the local atomic potential. In brief, because 
of the difference electronegativeness of Cr, Fe and Ni, Cr acts as a cation 
in the Fe-Cr-Ni system to donate electrons to Fe whereas Ni attracts 
electrons from Fe. The electron donation and attraction would imply 
the formation of Fe-Cr and Fe-Ni electric poles, and thus bring about 
attractive interaction between dissimilar electric poles and the repulsive 
energy between similar electric poles. Obviously, such fundamental 
studies help to gain a deeper understanding on the chemical heterogeneity 
of austenitic stainless steels. 

Similar to these, literature [94] and references therein studied the 
tendency of inter-atomic interactions among Fe, Cr and Ni in the same 
alloy system. By means of the measurements of conduction electron 
spin resonance, Gavriljuk et al. concluded that, in substitutional f.c.c. 
iron-based solid solutions, alloying elements located left of iron in the 
periodical table, e.g. Cr and Mn, decrease the free electron concentration 
and promote clustering of solute atoms. On the other hand, alloying 
elements located right of iron, e.g. Ni and Cu, increase the free electron 
concentration and assist short range atomic ordering. This paper has been 
highly cited, but unfortunately, by researchers other than those in the 
studies of nitride austenitic stainless steels. Nevertheless, the fundamental 
understanding suggested atomic scale chemical heterogeneity in the 
FeCrNi alloy system. For example, such extremely fine chromium 
clustering helps understanding the preferential Cr-N bonding as detected 
by XPS measurements and partially forms the basis for the Cr-trapping 
and detrapping dominated nitrogen penetration model. 

Other analytical approaches on the chemistry of nitride surfaces
In addition to XPS and AES, there are several other analytical techniques 

which probe the local chemical environments of alloys, such as extended 
X-ray absorption fine structure analysis (EXAFS), TEM based electron 
energy loss spectroscopy (EELS) and energy loss near edge structure 
(ELNES) analysis. Recently, the present author has employed EELS and 
ELNES in the characterization of nanocomposite coatings and wear 
induced tribo-chemical reactions [95-98], which not only demonstrated 
energy resolution in detecting light elements, like carbon, nitrogen and 
oxygen, but also evidenced the occurrence of sliding-induced oxidation of 
the nitrides. Therefore, we expect that EELS or ELNES analysis will be a 
useful tool in characterization of nitride steels. 

EXAFS refers to the details of X-ray absorption by an atom at energies 
near and above the core-level binding energies, which is sensitive to 
the changes in the local chemical environments, e.g. the distance, 
coordination number and species of atoms immediately surrounding 
the selected element. Oddershede et al. reported EXAFS investigations 
of short-range atomic orders in nitrided austenitic stainless steel [79, 
99]. They found that, N as a nearest neighbour leads to larger distortions 
of the local environment of Cr than for Ni and Fe. The majority of Cr 
atoms in the nitride sample was found to be present in Cr-N bond in an 
environment identical to or reminiscent of CrN nitride, with the EXAFS 
estimated local lattice constant of 0.412 – 0.413 nm as compared to 0.4148 
nm of CrN. The Fe atoms in the expanded austenite experienced a change 
in chemical surroundings from austenite to iron nitride phases, γ’-Fe4N1-x 
and ε-Fe2N1-x.

Discussion and conclusion remarks 
In summary, many microscopic and spectroscopic techniques have 

contributed to the characterization of nitrided austenitic stainless steels. 
Up to now, we are able to draw a more detailed sketch of the special 

structure generated by low temperature nitriding. The special structure, 
whatever in the name of expanded austenite, S-phase or others, can still 
be classified as a single crystalline phase having f.c.c.-like lattice type. 
The so-called single phase is mainly defined according to its XRD- and 
TEM-related characteristics, such as the crystalline homogeneous 
without any long-range ordered secondary precipitates, and the 
presence of dense crystalline defects including supersaturated interstitial 
nitrogen, dislocations and stacking faults. However, such conventional 
understanding of crystallography is not enough to describe its enriched 
physical and chemical nature. Beyond that, the most pronounced 
feature is, at least up to the frontier of current understanding, that the 
supersaturated nitrogen atoms do not homogeneously occupy the 
octagonal vacancies of the f.c.c. Fe-Cr-Ni crystalline lattice. Instead, the 
nitrogen atoms preferentially form strong ionic bonds to the Cr atoms, 
whereas the probability to bond to Fe atoms is remarkably smaller and the 
Ni atoms remain mostly in metallic bonds. In other words, the nitrogen, 
despite its supersaturation, exhibits a strong heterogeneity in the form of 
nano-scale ‘nitrogen clouds’ surrounding Cr atom clusters. In the view of 
thermodynamics, such Cr-cored ‘nitrogen clouds’ are in good consistency 
with the Cr-trapping and de-trapping diffusion mode as promoted by the 
strong Cr-N ionic bonding and, in thermodynamics, should remain the 
lowest free energy than a homogeneous distribution in the f.c.c. lattice.A 
similar phenomenon of gaseous agglomerates in interstitial alloys is 
the ‘Cottrell atmosphere’, in which small impurity atoms are trapped 
within dislocations to minimize the overall strain energy of the whole 
crystalline system. In a recent APT analysis of super-bainitic steel, such 
agglomeration of carbon atoms along dislocations has been proved [100]. 

Moreover, we believe that, the Cr dominated nano-scale heterogeneity 
already exist in a Fe-Cr-Ni austenitic stainless steel prior to a low-
temperature nitriding treatment, because at such low temperature 
the substitutional element Cr does not have sufficient exciting energy 
to undergo effective diffusion. The nitriding process only makes the 
heterogeneity being observed as Cr-N bonded clusters. According to 
the established knowledge, there should be two types of chromium 
segregation in the austenitic structure. The first type is associated with 
dendritic segregation of Cr and Ni during the casting of a steel ingot, 
in which the Fe-Cr-Ni melt solidifies in a temperature range, instead 
of at a fixed temperature as the solidification of a pure metal. In the 
solidification most low-melting-point elements distribute more in the 
last-solidified inter-dendritic volumes. The second type of heterogeneity 
exist in an equilibrium Fe-Cr-Ni austenite as a result of the different 
out shell electronic structures of Cr and Ni atoms to the Fe base metal. 
A research group in the Ukraine Institute of Metal Physics carried out a 
series of extensive studies on the correlation between electron structure 
and short range atomic order in Fe-Cr-Ni austenitic stainless steels. 
They suggested that, carbide-forming elements (like Cr) decrease the 
free electron concentration and prefer to form short range clusters of 
the same component (i.e. Cr-Cr bonds) [86,94,101-103]. On the other 
hand, non-carbide-forming elements (like Ni) increase the free electron 
concentration and promote short-range ordering (i.e. Fe-Ni bonds). 

The thermal stability of the expanded austenite phase depends almost 
completely on the mobility of Cr atoms. Repeated experimental research, 
including those cited in this review, has revealed the importance of 
relatively low nitriding temperature on the formation of single phase 
expanded austenite, because in such low temperature, the diffusion of 
substitutional elements is greatly inhibited. As long as pronounced Cr 
diffusion occurs, the nano-scale Cr-N clusters will be able to grow, leading 
to the XRD- and SEM-detectable CrN nitride particles. Meanwhile, the 
Cr-depleting phases α-Fe and γ-Fe4N are resulted in the close vicinities 
of the CrN particles. Such multi-phase structure triggers low corrosion 
resistance although it may maintain high hardness. 
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Numerous experimental researches have demonstrated the outstanding 
hardness property and corrosion resistance of the expanded austenite phase 
generated in low-temperature nitriding. In the view of modern materials 
science, the expanded austenite can be classified as a nanocomposite 
medium consisting of Cr-N clusters dispersed in a Fe-Cr-Ni-N matrix. 
In particular, the Cr-N clusters are short range ordered ionic compounds 
having coherent lattice relations to the f.c.c. matrix. Further research 
interests may lie in the study of the strengthening mechanisms. Because 
such hardened layer can improve significantly the abrasion resistance of 
austenitic stainless steel, it is worthwhile to investigate the effect of sliding 
contact, where both tangential stress and frictional heating are introduced, 
on the structural evolution. Nano-indentation and cross-sectional TEM 
are recommended for such purposes [95,96,104,105]. Meanwhile, the 
nanocomposite structure has been found to exhibit excellent corrosion 
resistance, which is also beneficial to the long-term performance of some 
special needs, such as medical implanted parts. Fundamental research 
should be applied to address the atomic scale interactions between the 
nano-scale clusters and any applied chemical medium.
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