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Introduction
Biotransformations can be defined as the use of natural 

biocatalysts– enzymes– for the transformation of non-natural 
manmade organic compounds [1]. Definition of biocatalysis is 
as simple as the use of enzymes in chemical synthesis [2]. Both 
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terms are used to describe the application of enzymes, either 
as isolated preparations or in whole cell format (both in their 
native cells or as recombinantly expressed proteins in alternate 
host cells) in a given synthetic schedule, with the aim of taking 
advantage of the exquisite enzymatic precision inherent to their 
use, in terms of chemoselectivity (selective transformation of 
one functional group in the presence of others), regioselectivity 
(formation of a regioisomer over another one) or 
stereoselectivity (formation of one stereoisomer over another) 
[3]. The use of biotransformations has increased considerably 
over the last few decades, complementing classical chemical 
synthesis in multiple industries, including pharmaceuticals, 
fine chemicals, or food [4-18]. On the other hand, and based on 
the principles and metrics of green chemistry and sustainable 
development, biocatalysis is absolutely a green and sustainable 
technology, as recently reviewed by Sheldon and Woodley 
[18]. To support this affirmation, these authors point out the 
following considerations:

•	 biocatalysts are produced from readily available renewable 
resources

•	 biocatalysts are biodegradable

•	 biocatalysts are basically non-hazardous and nontoxic

•	 Biocatalysts can substitute toxic catalysts based on metals, 
and the consequent costs of removing traces of these 
metals from end products are avoided.

•	 Biotransformation are generally performed under mild 
conditions (room temperature and atmospheric pressure) 
and generally in water

•	 Because of the previously mentioned enzymatic precision, 
biotransformation circumvents the need for functional-
group activation, protection, and deprotection steps.

Hence, biocatalyzed procedures not only are cheaper and 
generate less waste than conventional organic syntheses, 
but also are more environmentally attractive, more cost-
effective, and therefore more sustainable [19]. Then again, bio 
transformations with isolated enzymes can be carried out in 
standard multipurpose batch reactors, thus eluding the need 
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Abstract
The use of biocatalysts in chemical syntheses is becoming very 
significant in Green Chemistry; in fact, synthetic routes mediated 
by enzymes or cells are generally conducted under mild reaction 
conditions, at ambient temperature and can use water as reaction 
medium in many cases. The exquisite enzymatic precision (in 
terms of chemo-, regio- and stereoselectivity) avoids the need of 
functional group activation and protection/deprotection steps, 
usually required in traditional organic synthesis. Furthermore, 
modern techniques of genetic manipulation are creating enzymes 
even more precise and robust for being used in industrial 
processes. Accordingly, biocatalysis allows procedures which are 
shorter, produce less waste and reduce manufacturing costs and 
environmental impact. These features are even more significant in 
drug synthesis; a crucial area inside Medicinal Chemistry, since it 
is well known Pharma Industry is beyond a doubt the most waste-
producer. Thus, in this article we will comment some archetypical 
biocatalyzed protocols for the preparation of bioactive molecule 
and/or chiral building blocks for drug synthesis, to illustrate the 
great advantages of introducing biotransformations in synthetic 
pathways.
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for very expensive specific devices, such as high-pressure 
equipment [20,21]. Last but not least, because enzymatic 
processes are generally conducted under approximately 
the same conditions of temperature and pressure, multiple 
transformations can be easily coupled in cascade processes, 
therefore resulting in a very economically and environmentally 
attractive methodology [2,22-24].

On the other hand, it is well known that pharma industry is 
by far the most waste-producer, as observed upon calculation 
of the Environmental factor– mass of waste/mass of product, 
usually expressed as kg/kg, for assessing the environmental 
impact of manufacturing processes of active pharmaceutical 
ingredients (APIs) [25], this value is higher than 100, and can be 
nearly 200 in pre-clinical stages, indicating the huge amount of 
residues generated. For this reason, it is not surprising to check 
how bio catalysis is being increasingly implemented in pharma 
industry involved in drug synthesis [2,12,16,26-41,42-44].

Nevertheless, this increase has not been linear, being rather 
modest until the last two decades, when a clear burst has been 
observed [2], this explosion has been caused by the genetic 
manipulation of biocatalysts by directed evolution [45-51], 
what has been named the “third wave in biocatalysis” [5]. In fact, 
although enzymes are very active and selective biocatalysts, for 
industrial application, a very common reason to engineer them 
is to increase their stability under reaction conditions, because 
those ones needed for a biocatalytic procedure may differ 
dramatically from those present in a cell, therefore demanding 
high temperatures, extremes of pH, high substrate and/or 
product concentrations, oxidants, and organic co-solvents. 
Sometimes an enzyme must tolerate these conditions for only 
a few minutes or hours, but in a continuous manufacturing 
process, an enzyme may need to tolerate them for months. There 
are many ways to increase robustness of biocatalysts, being 
their immobilization probably one of the most traditionally 
studied and used [52-58]. But, as commented before, the 
implementation of directed evolution, that is, the rapid 
generation of enzyme mutants using new molecular biology 
techniques, combined with selective pressure via screening 
conditions [2], has enormously contributed to the preparation 
of new biocatalysts, able to work efficiently in experimental 
conditions very different from the “natural” ones, in terms 
of temperature, pH, presence of organic solvents, etc., while 
keeping or even increasing its exquisite precision. Anyhow, 
as pointed out by Truppo [2], we are still just scratching the 
surface of potential biocatalytic applications, because the next 
phase (“4th wave”, biocatalysts engineered through rational 
directed evolution in a design−make−test cycle combining 
multiple disciplines in one seamless industrialized workflow) 
will start when we were able to increase (between 2-10 times) 
the rate of the overall process.

Examples of Biocatalyzed Synthesis of Drugs
To illustrate this “need for speed” we would exemplify some 

archetypical cases of the employ of a biocatalyst in drug synthesis. 

Synthesis of Sitagliptin
Probably, the most representative example is the sitagliptin 

process used in the commercial manufacture of antidiabetic 
Januvia®, from Merck, the first marketed oral antihyperglycemic 
drug belonging to the gliptin family [59]. Sitagliptin can be used 
either alone or combined with metformin or thiazolidinedione, 
another oral antihyperglycemic agents in the treatment of 
Type 2 diabetes mellitus. Sitagliptin is the most widely sold 
dipeptidyl peptidase-4 (DPP-4) inhibitor in the US and 
worldwide, reaching sales of 6,358 million USD in 2014 with 
an expected rise to 7,525 in 2020. Sitagliptin was the second 
leading antidiabetic product in 2014, after insulin glargine, and 
is predicted to be the leading product by 2020 [60,61].

The first chemical synthesis of sitagliptin [62] involved 
asymmetric hydrogenation of an enamine 2 chemically derived 
from pro-sitagliptin 1 using a rhodium-based chiral catalyst 
(Rh [Josiphos]), at high pressure (Figure 1); nevertheless, 
this process is not stereoselective enough (97% ee), and the 
final product is contaminated with rhodium, so that different 
additional purification steps are required. Some other chemical 
syntheses have been recently reviewed by Davies et al. [63].

Nevertheless, an enzymatic process has substantially 
improved the efficiency of sitagliptin manufacturing [64,65]; in 
fact, using an engineered transaminase, developed at Codexis 
by rational design, a biocatalyst with broad applicability toward 
the synthesis of chiral amines was obtained. Thus, an (R)-
selective transaminase (ATA-117, a homolog of an enzyme 
from Arthrobacter sp.), was used as stating point, and it was 
modified to accommodate non-naturally recognized bulk 
substrates as prositagliptin 1, initially by a rational design 
through structural homology model of ATA-117, using a 
substrate walking approach with atruncated methyl ketone 
analog of 1. Accordingly, the large binding pocket of the enzyme 
was first engineered, and then evolving that enzyme for activity 
toward 1, leading to a better variant containing 12 mutations. 
Anyhow, as this engineered enzyme was not yet of practical 
utility, further evolution rounds (rounds 3 to 11) focused on 
increasing enzyme activity and in-process stability [66]. Finally, 
under optimal conditions, the best variant converted 200 g/L 
pro-sitagliptin ketone 1 (Figure 1) to sitagliptin 3 with a 92% 
yield and an enantiomeric excess higher that 99%, by using 6 
g/L enzyme in 50% DMSO. The biocatalytic process provides 
sitagliptin with a 10-13% increase in overall yield compared 
to the chemical process, a 53% increase in productivity (kg/L 
per day), a 19% reduction in total waste, the elimination of 
all heavy metals, and a reduction in total manufacturing cost. 
Furthermore, the enzymatic reaction is run in multipurpose 
vessels, so that specialized high pressure hydrogenation 
equipment is no longer needed. Full details of this process, 
which obtained the Presidential Green Chemistry Challenge 
Award (Greener Reaction Conditions Award) from the U.S. 
Environmental Protection Agency (EPA) in 2010 (http://www.
epa.gov/greenchemistry/pubs/pgcc/past.html), can be found 

http://www.epa.gov/greenchemistry/pubs/pgcc/past.html
http://www.epa.gov/greenchemistry/pubs/pgcc/past.html
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in literature [44,66-68,]. Since this innovative approach of 
biocatalyzed synthesis of sitagliptin using transaminases, other 
similar examples have been described [69,70]. 

Coming back to the Merck process, the directed evolution 
of the transaminase took one year, and subsequently the 
enzymatic transamination required a refile with regulatory 
agencies, as the product was already on the market by the time 
the biocatalytic synthesis was ready for implementation [2]. In 
this particular example, a doubling in speed should have been 
enough for fulfilling Merck’s needs, but, as commented before, 
it would be highly desirable to reach a 10-fold increase in the 
speed of the overall biocatalyst optimization.

Synthesis of Montelukast
Montelukast 7 (Figures 2) is an orally active selective 

leukotriene receptor antagonist used for the treatment of 
asthma, originally developed by Merck under the name of 
Singulair®. The synthetic route [71,72] requires large amounts 
(to produce annual volume of approximately 20 metric tons per 
year) of solvents and (−)-β-chlorodiisopinocampheylborane 
[(−)-DIPchloride], a chiral reducing agent, toxic, corrosive and 
moisture sensitive, causing burns if it is allowed to contact the 
skin; furthermore, the chemical reduction of ketone 5 must be 
carried out at −20 to −25°C to achieve the best stereoselectivity, 
and requires 80 stoichiometric amounts of [(−)-DIPchloride], 
so that its replacing should eliminate a major source of waste 
and cost in the process.

An enzymatic alternative for reducing starting ketone 5 was 
created by researchers at Codexis and Arch Pharm Labs Limited, 

which developed a ketoreductase (KRED) by directed evolution, 
using high-throughput screens mimicking the actual process 
conditions [73]. Beneficial mutations obtained during each 
round were recombined and new mutations were introduced, 
guided by ProSAR, with the target of finding a biocatalyst not 
more stereoselective than starting KREDs (very stereoslective, 
leading to ee>99.9%), but rather to efficiently convert substrates 
as different as bulky ketone 5 and small isopropanol showing 
higher activity than the initial bioreduction tests (0.1-0.2 g/L 
of alcohol 6 after 24 h, target ≥ 100 g/L in ≤ 24 h) [73]. The 
productivity of the final enzyme was improved 2000-fold and 
stability was also substantially increased, thus allowing a multi-
kilogram process furnishing 233 kg of intermediate 6 (97.2% 
yield, >99.9% ee), which is not soluble in the reaction medium, 
therefore shifting the equilibrium in a very effective manner 
and avoiding the necessity of any further recrystallization. 
Regarding the cofactor regeneration, the engineered KRED was 
also capable to oxidize isopropanol (auxiliary substrate) very 
efficiently, not requiring any other enzyme for this purpose, 
therefore avoiding the time-consuming evolution of another 
biocatalyst. Recently, some Chinese companies have developed 
some modifications of the bioreduction [74,75], while other 
chemical catalysts have been also tested [76].

Synthesis of the lateral chain of Atorvastatin
Another representative example is the multiton-scale 

Codexis protocol for the preparation of ethyl (R)-4-
cyano-3-hydroxybutyrate (Figure 3, HN10), also known 
as “hydroxynitrile” (HN), key molecule for furnishing the 

Figure 1: Chemical vs bio catalyzed synthesis of sitagliptin.



 
Sci Forschen

O p e n  H U B  f o r  S c i e n t i f i c  R e s e a r c h

Citation: Alcántara AR (2017) Biotransformations in Drug Synthesis: A Green and Powerful Tool for Medicinal Chemistry. J Med Chem 
Drug Des 1(1): dx.doi.org/10.16966/2578-9589.102 4

Journal of Medicinal Chemistry and Drug Design
Open Access Journal

Figure 2: Chemical vs bio catalyzed synthesis of montelukast.

Figure 3: Codexis’s three-enzyme two-step process for the synthesis of HN 10.
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lateral chain of atorvastatin 11 and other statins: because 
of the great overall demand of HN required for atorvastin 
synthesis (estimated to be in excess of 100 metric tons [77], 
it is highly desirable to reduce wastes and hazards involved 
in its manufacture while reducing its cost and maintaining 
or, preferably, improving its quality. In fact, the nucleophilic 
substitution of ethyl (S)-4-chloro-3-hydroxybutanoate 
(S-CHBE, 9) with cyanide, the classical chemical protocol, 
generates a huge amount of residues (E>100), so a three-enzyme 
two-step process, depicted in Figure 3, increase the quality and 
sustainability of the purely chemical synthesis.

Hence, the first step involves the biocatalytic reduction 
of 8, using a genetically improved keto reductase (KRED) 
in combination with a modified NADP-dependent glucose 
dehydrogenase (GDH) for cofactor regeneration, leading to 9 in 
96% isolated yield and >99.5% ee. In the second step, a halohydrin 
dehalogenase (HHDH), an enzyme capable of catalysing the 
elimination of halides from vicinal haloalcohols, resulting in 
epoxide ring formation [78], also catalytically enhanced by 
directed evolution, was employed to catalyse the nucleophilic 
substitution of chloride by cyanide. The efficiency and greenness 
of this protocol (Codexis was awarded the U.S. Environmental 
Protection Agency’s Presidential Green Chemistry Challenge 
Award in 2006 for this work [79] is based on the fact that all 
previous manufacturing routes to HN involved, as the final 
step, a standard but troublesome SN2 substitution of halide with 
cyanide ion in alkaline solution (pH=10) at high temperatures 
(80ºC), being this reaction substituted in the Codexis protocol 
[40]. In fact, in the SN2 chlorine substitution, both 9 and 10 are 
base-sensitive molecules, and extensive by-product formation 
is observed, leading to high E values [77]. Moreover, the 
product is a high-boiling oil, and a troublesome high-vacuum 
fractional distillation is required to recover 10, resulting in 
further yield losses and waste, and clearly contravening the 1st 
and 6th principles of Green Chemistry [80]. Thus, conducting 
the cyanation reaction under milder conditions at neutral pH, 
by employing the enzyme, HHDH, is the key step for increasing 
the greenness of the overall process. 

Regarding the enzymes used in this methodology, both 
the wild-type KRED and GDH, as well as HHDH, initially 
displayed very low activities, so that in the first experiments, 
huge enzyme loadings were required to obtain an economically 
feasible reaction rate, therefore leading to troublesome 
emulsions, which hampered the subsequent downstream 
processing; additionally, although wild-type enzymes were 
highly stereoselective indeed, they showed severe product 
inhibition and poor stability under operating conditions [81], 
and therefore they should be improved to enable a practical 
large-scale process. Thus, the three enzymes were optimized 
by in vitro enzyme evolution using gene shuffling technologies 
according to predefined criteria and process parameters, 
resulting in an overall process in which the volumetric 
productivity per mass catalyst load of the cyanation process 

was improved ~2500-fold, comprising a 14-fold reduction in 
reaction time, a 7-fold increase in substrate loading, a 25-fold 
reduction in enzyme use, and a 50% improvement in isolated 
yield [77]. 

Concluding remarks
Many other cases could be commented to illustrate the great 

potential for the (industrial) use of biocatalysts in drug synthesis, 
as covered in the increasingly number of revisions published in 
literature, and previously mentioned in this manuscript. This 
is far from my purpose; I just want to draw attention to this 
green and powerful tool, which is here to complement organic 
chemistry, and to increase the sustainability of the whole 
process of drug synthesis. I would like to end by complementing 
Truppo’s masterful prediction on the future of biocatalysis [2]: 
the future is not only bright, but rather bright green.
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