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Introduction
In the past few decades, with the rapid advancement in high-throughput 

sequencing of the genome and transcriptome, people have investigated 
many genetic changes associated with cardiovascular diseases. Recently, 
epigenetics such as DNA methylation, histone modifications, oxidative 
modification, and non-coding RNAs, that regulate gene expression 
without altering DNA sequences, add novel insight into the mechanisms 
behind heart disorder and regeneration. Epigenetic changes may explain 
why subjects with similar genetic backgrounds and risk factors can 
cause distinct clinical manifestation and therapeutic response for some 
particular diseases [1]. Additionally, Human Epigenome Project and 
International Human Epigenome Consortium have been launched to 
analyze epigenetics in cancer, diabetes, autoimmune diseases [2-5]. 
In this review, we focus on recent findings on the advances targeting 
epigenetic regulatory mechanisms underlying cardiac development 
and cardiovascular diseases, revealing novel therapeutic strategies in 
cardiovascular diseases.

DNA Methylation
DNA methylation is catalyzed by DNA methyltransferases (DNMTs) 

at the C5 position of cytosine residues within CG dinucleotides (CpG) 
[6], which is usually linked to poor genome stability and gene expression 
[7]. There are three DNMTs responsible for methylating DNA. DNMT1 
maintains DNA methylation during replication, whereas DNMT3a and 
DNMT3b establish de novo DNA methylation [8]. On the contrary, three 
ten-eleven-translocation (TET) enzymes (TET1, TET2, and TET3) oxidize 
5-methycytosine to 5-hydreoxymethycytosine, which are identified to 
mediate the initial process of DNA demethylation [9].

The development of heart is a complex process involving coordinated 
cellular proliferation, migration, differentiation, programmed cell 
death, and structural remodeling [10]. According to statistics, 60~80% 

CpG sites in the human genome are methylated [11]. Recent studies 
demonstrated that global hypomethylation and death in early embryo 
occured in DNMT1-null mice [12]. Meanwhile, DNMT3a and DNMT3b 
are proved necessary for mammalian development [13]. In addition, 
TET3-dificiency in mice led to embryonic developmental failure [14]. 
However, detailed knowledge is limited about DNA methylation in 
regulating cardiac development. Studies indicate that murine embryonic 
cardiac development is associated with increases or decreases in DNA 
methylation, particularly for some cardiac-specific genes [10,15].

Large-scale studies have identified that DNA methylation is closely 
related to cardiovascular diseases, including Atherosclerosis, Coronary 
Heart Disease (CHD), Heart Failure (HF), Myocardial Infarction (MI), 
and Cardiac Hypertrophy. Ziller et al. [16] charted the dynamic DNA 
methylation landscape of human genome through high-throughput 
profiling of DNA methylome. Looking into the map, the cardiac-specific 
differentially DNA methylated regions were enriched for cardiovascular 
disease-relevant Single Nucleotide Polymorphisms (SNPs). Furthermore, 
in promoter regions of some cardiovascular disease-related genes, 
cytosine methylation prohibits binding of transcription factors, thus 
inhibiting expression of downstream genes [17,18]. For instance, a double 
homeobox transcription factor Dux4-associated CpG island displayed 
elevated DNA methylation and caused Dux4 repression in end-stage 
failing human hearts compared to healthy tissues [19]. Baccarelli et al. 
[20] found that lower LINE-1 (a repetitive element) methylation in 
peripheral blood leukocytes could be used as a biomarker for ischemic 
heart disease and stroke. In a follow-up study, Girelli et al. [21] explored 
that the polymorphisms of coagulation factor VII (F7) was linked with 
increased risk of MI in patients with coronary artery disease (CAD) [21]. 
After that, the same team investigated that the promoter methylation in 
coagulation F7 gene influences plasma FVII concentrations and relates 
to CAD [22]. It is well known that ApoE-/- mice represent histological 
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Abstract
Epigenetic mechanisms which comprise DNA methylation, histone modification, oxidative modification, and non-coding RNAs, are closely 

linked to cardiac development and dysfunction. However, the exact mechanisms remain unclear. More and more studies have represented 
altered DNA methylation or distinct changes in chromatin modifications within cardiovascular diseases including atherosclerosis, heart 
failure, myocardial infarction, and cardiac hypertrophy. Oxidative modification has also been uncovered involving in the cardiac physiology 
and pathophysiology. Among these mechanisms, microRNAs (miRNAs) have been widely demonstrated essential to cardiac development, 
pathology, repair, and as potential biomarker or therapeutic targets in the clinic. Most of the epigenetic changes control the development and 
progression of cardiovascular diseases through increasing or decreasing expression of cardiac-related genes. Nevertheless, how epigenetics 
lead to the changes of chromosome structure and their complex interplay still need further exploration. Here, we review recent findings on the 
epigenetic mechanisms and highlight their functions in heart development and pathology, which are expected to inform novel therapeutic targets 
for cardiovascular diseases. 
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changes of atherosclerosis, meanwhile decreased DNA methylation is also 
detected [23], indicating that aberrant DNA methylation plays critical 
roles in disease progression. In patients with HF, levels of tumor necrosis 
factors (TNF-α) and angiotensin II (Ang II) were induced [24,25]. In 
vitro experiments, the DNA methylation inhibitors have been proved 
to suppress TNF-α- and Ang II-induced cardiac hypermethylation, 
exhibiting a novel therapeutic strategy for HF [26,27]. In some cases, gene-
specific methylation is emerged as an epigenetic mechanism involved 
in the pathogenesis of cardiovascular diseases, and as a biomarker of 
increasing risk of cardiovascular diseases [27].

Histone Modifications
In the nucleus of cell, nucleosome is a fundamental primary unit of 

chromatin, comprised of DNA and histone octamers (formed with 2 copies 
each of the core histones H2A, H2B, H3 and H4) [28,29]. The histones can 
confer plasticity to chromatin packaging through dynamically modified 
or exchanged with variants [30,31]. Histone modifications usually occur at 
the N-terminal tails, including acetylation, methylation, phosphorylation, 
sumoylation, ubiquitination, biotinylation and ADP-ribosylation [32,33]. 
Histone modifications influence chromatin structure, thereby modulating 
histone-DNA interactions and gene regulation [32,34]. The most common 
modifications are acetylation, methylation, and phosphorylation. 
Generally, histone acetylation is catalyzed by histone acetyltransferases 
(HATs) on lysine residues, and results in transcriptional activation [35]. 
In contrast, removal of histone acetylation is accomplished by histone 
deacetylases (HDACs) [36]. Histone methylation often takes place at 
lysine and arginine residues of H3 and H4 histones, but does not alter 
histone charge [36]. Histone methyltransferases (HMTs) and demethylases 
regulate this process [37].

Epigenetic histone modifications have been confirmed to play a 
prominent role in normal and aberrant heart development. In mammals, 
MYST (Moz, Ybf2/Sas3, Sas2, Tip60) family is one member of HAT family 
[38]. Aggarwal and Voss et al. [39] observed that the cardiac phenotype of 
Moz-/- mice was similar to loss function of the transcription factor Tbx1 
[39], which is essential for cardiac development. Further studies showed 
that Moz-/- mice reduced the H3K9 (lysine 9 of histone 3) acetylation 
and expression of Tbx1 [40]. In addition, the double knockout mice of 
HDAC1 and HDAC2 displayed heart defects and resulted in death early 
after birth [41]. Several lysine methyltransferases, such as SMYD1 [42], 
EZH2 [43] and DOT1L [44], have been extensively studied and proved 
to be essential for heart development by altering the expression of cardiac 
transcription factors.

Growing researches have demonstrated that histone modifications are 
involved in the progression of cardiovascular diseases. Study of Papait et 
al. [45] discovered many changes of histone marks using ChIP-seq after 
heart transverse aortic constriction and enhancers underlying cardiac 
hypertrophy [45]. Nitric oxide (NO) is important for vascular tone and 
protects against atherosclerosis. In the endothelial cells, the endothelial 
nitric oxide synthase (eNOS) catalyzes the generation of NO [46], and its 
expression is modulated by histone modifications (acetylation of H3K9, 
acetylation of H4K12, and methylation of H3K4) at the proximal promoter 
site [47]. Recently, studies have found that HDAC inhibition could 
improve functional myocardial recovery after MI through facilitating 
phosphorylation of Akt-1 and decreasing active caspase 3 in mice [48,49]. 
In addition, proteins harboring bromodomains serve as “reader proteins” 
of histone modifications, which recognize and bind to the acetylated 
lysine (Kac) on histone tails [50]. Anand et al. [51] demonstrated that 
bromodomain proteins function mechanistically as pause-release factors 
of genes that are central to HF pathogenesis [51]. JQ1, a small molecule 
inhibitor of bromodomain proteins, is able to suppress HF progression in 
vivo by competitively displacing bromodomain proteins from Kac binding 

sites [52,53], confirming the essential role of bromodomain proteins in 
cardiac pathology. Taken together, these studies illustrate key roles of 
histone modification in heart development and disease. Further studies 
on the drugs such as HDAC inhibitors targeting histone methylation or 
acetylation are necessary for the treatment of cardiovascular diseases in 
the clinical. 

Oxidative Modification
Oxidative modification is firmly implicated in the cardiac disorder 

[54]. Oxygen and nitricoxide which are referred to as ROS and reactive 
nitrogen species (RNS) are biologically critical cellular oxidants [54]. 
Excessive ROS and RNS cause cell damage through oxidative modification 
of marcromolecules including proteins and nucleotides (DNA and RNA). 
For proteins, methionine, tryptophan, tyrosine and cysteine residues can 
undergo oxidative modification, while only the oxidative modification of 
sulfhydryl group of cysteine has participated in signal transduction [55]. 
S-nitrosylation is the most important form of oxidative modification of 
proteins at sulfhydryl group, and is reported to be associated with heart 
diseases [55,56]. For example, glutathionylation of β1 Na+-K+pump 
subunit is increased by peroxynitrite (ONOO-), paraquat, or activation 
of NADPH oxidase stimulated by AngII, which inhibit Na+-K+pump 
activity in cardiac myocytes [57,58]. Caspase-3 is a critical cardiomyocyte 
apoptosis related protein and its oxidative modification participates in 
the apoptosis regulation. Caspase-3 glutathiolation attenuates necrosis 
factor-α induced endothelial cell death [59]. The levels of SECA2a 
oxidation/nitration are increased significantly in abnormal myocardium 
calcium homeostasis of diabetic rats. Further study indicates that iron 
exacerbates the diabetes-induced oxidative/nitrative modification of 
SERCA2a, which may lead to functional deficits in the myocyte associated 
with diabetic cardiac dysfunction [60]. Increased superoxide and nitric 
oxide production cause mitochondrial dysfunction in myocardial 
ischemia/reperfusion injury, of which the oxidative impairment decreases 
protein S-glutathionylation and increases protein tyrosine nitration at 
the 70kDa subunit, occur in the post-ischemic myocardium [61-63]. It 
is reported that polydatin protects cardiac function against burn injury 
by inhibiting sarcoplasmic reticulum Ca2+ leak by reducing oxidative 
modification of ryanodine receptors [64]. Sirtuin 6 (Sirt6), a site-specific 
histone deacetylase that prevents development of cardiac hypertrophy and 
heart failure, could be oxidative modified. In detail, tyrosine 257 in Sirt6 
is nitrated upon oxidative stress, and mutation of tyrosine 257 as well as 
abolishing the stimulation attenuate Sirt6 activity [65]. Besides, the protein 
actin, activating transcription factor/cyclic-AMP-responsive element 
binding protein (ATF/CREB), α4 VLA-4, c-Jun, creatine kinase, GAPDH, 
glutaredoxin, mitochondrial complex I, P50 subunit of NF-КB, protein 
kinase A, protein kinase C, PTP1B, Ras (G protein), ryanodine receptor, 
SERCA, and thioredoxin are susceptible to oxidative modification which 
involved in cardiovascular physiology and pathophysiology [54].

Additionally, oxidative modification of DNA and RNA is related to 
cardiovascular diseases. Besides 5- hydroxy thymine, 5-hydroxy methyl 
uracil, 5-Hydroxy-2-deoxycotosine and 8-hydroxyadenine, 8-oxo-
7, 8-dihydro-2’-deoxyguanosine (8-OHdG) in DNA and 8-oxo-7, 
8-dihydroguanosine (8-OHG) in RNA by ROS are two common forms 
of oxidative modification of nucleotides. The growing evidence has 
demonstrated that 8-OHdG and 8-OHG played an important role in heart 
pathophysiology. 8-OHdG and 8-OHG are most used as the biomarkers 
for monitoring oxidative damage and heart disease [66-70]. It is reported 
that 8-OHdG is implicated firmly in cardiovascular diseases including 
CAD, HF and MI. A significant increasing levels of 8-OHdG was observed 
in CAD, HF and MI patients compared to healthy control subjects [70]. 
Further study reveals that a high concentration of 8-OHdG caused by 
ROS induces atherosclerotic plaque formation through constructing a 
new lineage of smooth muscle cells, and then played a role in initiation 
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and progression of atherosclerosis [71,72]. In heart failure, a decreased 
number of mitochondrial DNA as well as a decline in its protein level 
are in agreement with the increased 8-OHdG concentrations, which 
indicates that 8-OHdG probably regulates heart failure through targeting 
mitochondrial DNA [70,73]. 8-OHdG also contributes to cocaine-
related cardiomyopathy through regulating cardiomyocyte apoptosis and 
necrosis [74]. Oxidative modification of RNA has been demonstrated 
associated with aging and neurodegenerative diseases. The oxidation of 
ribosomal RNAs participated in Alzheimer’s disease [75,76]. However, 
there is little report that oxidation of RNA function in cardiovascular 
system except one. Wang et al. [77] found that small RNA microRNA-184 
could be oxidatively modified by ROS to form 8-OHG which leaded to 
the mismatch of microRNA-184 with Bcl-xL and Bcl-w involved in the 
regulation of cardiomyocyte apoptosis and ischemia/reperfusion injury.

MicroRNAs 
MicroRNAs (miRNAs), a class of approximately 22-nucleotide non-

coding RNA, function in regulating of gene expression in a variety 
of biological processes including cell proliferation, differentiation, 
damage, death and carcinogenesis. MicroRNAs also played a significant 
role in development, disease, aging and regeneration. With regard to 
cardiovascular system, microRNAs serve as a critical regulators implicated 
firmly in heart development and diseases [78,79].

During early heart development, the mammalian embryonic heart 
is mainly derived from four major cell types including cardiomyocytes, 
endocardial cells, epicardial cells, and neural crest cells. MicroRNAs 
participate in regulating the proliferation, differentiation, and survival 
of these cells [78]. MiR-1 inhibits cardiac growth and differentiation 
through targeting transcription factor HAND2 which is important for 
ventricular cardiomyocyte expression [80]. Overexpression of miR-
1 inhibits cardiomyocytes proliferation, while knockout of miR-1 
affects cardiac morphogenesis [81,82]. MiR-133 negatively regulates 
cardiomyocyte proliferation through inhibiting Cyclin D2 and Serum 
Response Factor [83]. Mir-320 induces apoptosis in cardiomyocytes by 
inhibiting heat-shock protein 20 [84]. Mir-143 and miR-145 are critical 
regulators in promoting the differentiation and proliferation of vascular 
smooth muscle cell from cardiac neural crest cells through targeting a 
network of transcription factors including Klf4, Myocardin, and Elk. 
The dedifferentiation decreases miR-143 and miR-145, while over 
expression of miR-143/145 enhances the differentiation of vascular 
smooth muscle cell [85,86]. During epicardial development, miR-21, 
miR-31, miR-103/107, miR-155, and miR-200 have been demonstrated 
playing important roles [87-89].

MicroRNAs participate widely in heart diseases including myocardial 
hypertrophy and myocardial infarction [79]. MiR-23a is known as its 
powerful function in myocardial hypertrophy regulation. MiR-23a 
expression level is upregulated in response to hypertrophy stimulation. Then 
MiR-23a initiates cardiac hypertrophy through different pathways such as 
inhibiting transcription factor Foxo3a and targeting lysophosphatidic acid. 
MiR-23a transgenic mice exhibit exaggerated cardiac hypertrophy upon 
treatment with phenylephrine, endothelin-1 or transverse aortic banding 
[90,91]. MiR-23a functions downstream of NFATc3 related cardiac 
hypertrophy pathway [92]. Besides MiR-23a, myocardial hypertrophy 
regulation network consists of many other MicroRNAs such as miR-
541, miR-9, miR-218, miR-30c, miR-181a, miR-410, and miR-495 [93-
97]. MicroRNAs play an important role in myocardial infarction. MiR-
499 has been demonstrated inhibits myocardial infarction by negatively 
regulating both calcineurin and dynamin-related protein-1, and exhibits 
cardioprotective effects [98]. MiR-21 promote cardiac fibrosis by targeting 
extracellular regulated kinase inhibitor sprout homolog 1 (Spry1), and 
then exacerbate myocardial infarction [99]. 
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