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Reperfusion of the ischemic myocardium by Percutaneous Coronary 
Interventions (PCIs) such as coronary bypass surgery, angioplasty and 
thrombolytic therapy is essential for the improvement in morbidity 
and mortality for patients who suffer from ischemic heart disease [1-3]. 
However, if the reperfusion is not instituted within a certain time-
period of the ischemic insult, several cardiac complications including 
arrhythmias, impaired recovery of cardiac function and myocardial cell 
damage become evident [4,5]. Such abnormalities, defined as Ischemia- 
Reperfusion (I/R) injury, are also seen during cardiac transplantation. 
Thus, a great deal of research has been carried out to understand the 
mechanisms of I/R injury as well as to develop different interventions 
which may improve clinical outcome of patients with ischemic 
heart disease. Indeed, there have been considerable improvements 
in understanding the pathophysiologic processes underlying the I/R 
injury and multiple targets for the development of drug therapy have 
been identified [3,6-8]. In this regard, several preclinical studies have 
shown a great promise for different agents to exert beneficial effects on 
I/R injury; however, when these interventions were tested in clinical 
trials, the results were disappointing. Perhaps the failure of clinical trials 
with several cardioprotective agents may be related to the fact that the 
clinical investigations were concerned with the treatment of patients with 
I/R injury whereas the preclinical studies were carried out to determine 
the preventive effects of different drugs. Furthermore, the pre-clinical 
studies seem to be designed for preventing the impact of myocardial 
ischemia on the reperfusion-induced defects in the heart. It is therefore 
of critical importance to understand the pathophysiology of myocardial 
ischemia to gain insight into the mechanisms of reperfusion injury to 
the ischemic heart. This review is focused on the current knowledge 
of the pathophysiologic processes due to I/R injury with respect to 
changes in the metabolic processes, development of oxidative stress, 
generation of inflammation as well as structural damage to subcellular 

organelles. This article is also intended to describe the functional effects 
of I/R injury to emphasize its clinical manifestations. Attempts are 
also made to explore the therapeutic value of pharmacologic agents 
including inhibitors of cation channels and exchangers, antiplatelet 
agents, vasodilators, anti-inflammatory agents as well as protease 
inhibitors from the prevention and treatment viewpoints. In addition, 
the cardioprotection afforded by interventions such as pre-conditioning, 
post-ischemic conditioning and remote ischemic conditioning against 
I/R-induced abnormalities are discussed.

Changes in Intracellular Environment
Metabolic alterations

After an ischemic insult to the heart, a complex series of cellular 
metabolic changes occur that set the layout for the generation of I/R 
injury. The beginning of this is the switch from aerobic to anaerobic 
metabolism in the ischemic myocardium. Cessation of aerobic 
metabolism causes the loss of high-energy phosphates stores such as 
ATP and creatine phosphate in cardiomyocytes; the depletion of energy 
stores is associated with a shift to anaerobic glycolysis [6,9]. It is pointed 
out that anaerobic metabolism leads to decreased intracellular pH 
and changes in the cation distribution within cells. This metabolic 
shift due to myocardial ischemia also generates excess lactate within 
cardiomyocytes increasing the osmotic load in the cellular environment 
and creates ultrastructural changes including cell swelling as well as 
mitochondrial, sarcoplasmic reticulum and sarcolemmal abnormalities 
[10]. The activity of mitochondrial Pyruvate Dehydrogenase (PDH) 
remains depressed up to 30 minutes after reperfusion [11,12]. Since 
the post ischemic recovery of contractile dysfunction in the heart is 
dependent on PDH activity [12], this metabolic defect is a potential target 
for the development of cardioprotective therapies.

ISSN 2379-769X

Abstract
Ischemia Reperfusion (I/R) injury is a consequence of reperfusion of the ischemic myocardium when reperfusion is carried out beyond 

a certain time period of the ischemic insult. The I/R injury is associated with impaired heart function as well as myocardial cell damage and 
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consequence of oxidative stress and intracellular Ca2+- overload, marked alterations in cardiac gene expression and translation mechanisms 
may play a critical role in attenuating the recovery of ischemic myocardium. This article therefore is focused on understanding changes in 
the metabolic and molecular processes occurring in the heart due to I/R injury. Furthermore, current and potential pharmacologic as well as 
non-pharmacologic interventions are indicated for preventing the I/R injury in the heart.
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Altered calcium handling
As perfusion to the myocardium is re-established, there is a large 

shift of intracellular and mitochondrial Ca2+ ions from the Sarcoplasmic 
Reticulum (SR) as a result of alterations in the sarcolemmal ion 
pumps [6,13]. The process for altered calcium metabolism starts when 
accumulation of excess protons in cardiomyocytes during anaerobic 
metabolism triggers the activation of sarcolemmal Na+ -H+ ion exchanger 
as a mean to re-establish ionic gradients [14]. This ion transporter 
removes H+ ions in exchange for Na+ ions leading to extremely high 
concentration of sodium within the cell. The intracellular hypernatremia 
activates the sarcolemmal Na+ -Ca2+ exchanger allowing entry of Ca2+ 
into the cell and removing the excess Na+. Elevation of intracellular Ca2+ 
is also caused by the failure of Na+ -K+ ATPase to remove Na+ ions. This 
defect in Na+ -K+ ATPase appears to be secondary to changes in the 
intracellular environment, specifically lowering the pH and elevating 
the Ca2+ concentration. The Na+ -K+ ATPase activity is also depressed 
by the depletion of high-energy phosphates during the anaerobic 
metabolism [13] as the development of intracellular Ca2+ overload will 
deplete ATP by stimulating different Ca2+ ATPase activities [6]. These 
conditions cause structural changes to the transmembrane pumps and 
exchangers, and affect amino acid as well as sulfhydryl group ends of 
proteins, and thus attenuating their cation translocation activities.

Mitochondrial dysfunction
The next step during the development of I/R injury is dysfunction of 

the mitochondria. As stated previously, the mitochondria are damaged 
in the reperfusion process by changes in the osmolarity, pH and shifts 
of Ca2+. With re-establishment of blood flow, channels within the 
mitochondrial membrane, Mitochondrial Permeability Transition Pores 
(MPTP), open allowing proteins to move freely across the membrane 
[15]. The consequences of pore opening are osmotic stress on the 
outer membrane with eventual rupture; leading to the release of reactive 
oxygen species as well as release of mitochondrial proteins [13,16]. There is 
also further disruption of the mitochondrial function by the occurrence 
of intracellular Ca2+ due to I/R injury where an excessive amount of Ca2+ 

is accumulated in the mitochondria and this will result in uncoupling of 
oxidative phosphorylation and defect in ATP production [6]. Once again 
the loss of ATP perpetuates the altered ion gradient and degeneration 
of enzymes within cell [16]. It has been shown that the opening of the 
MPTPs in first few minutes of reperfusion is the critical determinant 
of the extent of I/R injury and can contribute up to 50% of the final 
size of infarcted myocardium [15]. Inhibitors of MPTPs therefore have 
been tested as potential therapeutic targets. The development of leaky 
mitochondria due to I/R injury generates the release of cytochrome C, 
proteases and caspases, which lead to apoptosis of the cell [6,16]. This 
process associated with the occurrence of intracellular Ca2+ overload 
has been shown to contribute to the destruction of large amounts of 
cardiomyocytes upon re-establishing the blood flow in the ischemic 
myocardium [22], and is considered to be a major target for the 
prevention of I/R injury.

Generation of free radicals
Depending upon the degree and duration of ischemia, the 

production of excessive quantities of Reactive Oxygen Species (ROS) 
takes place, lasting many hours after the restoration of blood flow [17]. 
Potent free radicals and oxidants such as superoxide anion, hydrogen 
peroxide, hydroxyl radicals, hypochlorous acid and nitric oxide-
derived peroxynitrite are generated. The postulated mechanisms for 
which the development of these oxyradicals and oxidants include the 
presence of xanthine oxidase post ischemia, activated neutrophils that 
migrate to the damage cardiomyocytes, electron outflow and cytochrome 
disruption from the leaking mitochondria. The release of a massive 

amount of catecholamines and their oxidation subsequently as well 
as the generation of cyclooxygenase and lipoxygenase contribute to 
the growing pool of ROS during I/R injury [3,6,17]. The ROS have 
many effects on the cardiomyocyte; they act at the molecular level by 
increasing Ca2+ uptake in cardiomyocytes, influencing activities of 
sarcolemmal ATPases, activating of intracellular proteases and producing 
the breakdown of cellular structural components [3,6,17,18]. Superoxide 
and peroxynitrite have been shown to trigger DNA strand breakage, this 
subsequently activates nuclear enzyme Poly-ADP-Ribosyl-Synthetase-1 
(PARP-1), a potent cause of infarction and contractile dysfunction 
in the heart [18]. The absence of PARP-1 in knockout mice showed 
less contractile dysfunction after ischemia [19]. ROS have also been 
shown to increase the activity of intracellular proteases such as matrix 
metalloproteinase-2 in the I/R hearts [20]. These proteases as well 
as the ROS themselves have destructive effects on phospholipids in 
membranes of the cell and structural components of the interstitial matrix 
[21,22]. The destruction of the sarcolemmal membrane by ROS is a 
major player in impairing the contractile function of the cardiomyocyte. 
There have been studies showing that scavengers of ROS such as 
superoxide dismutase, N-acetylcysteine and mercaptopropionylglycine 
help to preserve myocardial function [18,20]. Interestingly, some studies 
focused on ischemic preconditioning have also found that a decrease in 
the concentration of certain types of ROS is beneficial as it contributes 
to cardioprotection by decreasing the proteosome activity [13]. Finally, 
the formation of ROS has been shown to stimulate the inflammatory 
response through leukocyte activation, chemotaxis, and leukocyte-
endothelial adherence [23].

The generation of elevated intracellular Ca2+ and ROS has been 
observed to activate intracellular proteases [24]. The activity of 
proteases contributes to I/R injury by altering the interplay between 
intracellular and extracellular proteins resulting in cardiac dysfunction 
[22]. The dysregulation of proteases interferes with homeostasis in the 
cell, generating misfolded or malfunctional proteins which affect 
myocytes by degradation of structural components, interstitial matrix, 
cell adhesion proteins, myofibrillar proteins and mitochondria membrane 
proteins [24]. Proteases also contribute to apoptosis in cardiomyocytes 
through the stimulation of signaling proteins directly as well as through 
the destructions of mitochondrial membrane. Cardiac proteases that have 
been shown to play a role in I/R injury are calpain, metalloproteinases, 
cathepsins as well as amino and dipeptidyl P peptidase-4. Several animal and 
human studies have shown a reduction in I/R-induced cardiac dysfunction 
when the inhibitors of the aforementioned proteases are present prior to and 
during the reperfusion phase of the ischemic heart [21].

Alterations in gene expression
Numerous studies have shown that I/R injury lead to altered expression 

of genes responsible for coding proteins that are important for the proper 
cardiac function. It has been shown that messenger RNAs (mRNAs) for 
proteins such as myosin heavy and light chain isoforms, myofibrillar 
Ca2+ stimulated ATPase [25], Na+ -K+ ATPase isoforms [26] as well 
as mRNAs for sarcoplasmic reticulum proteins including ryanodine 
receptor, phospholamban and calsequestrin [27,28] were depressed due 
to I/R injury. It was proposed that depression of mRNAs due to I/R 
injury may be the consequence of oxidative stress as well as intracellular 
Ca2+ overload in the I/R heart [25,28], which may induce these changes 
by affecting the transcriptional process in the nucleus.

The depression in mRNA activity due to I/R injury may also be caused 
by their modulation via micro RNAs (miRNAs), which represent a 
class of small endogenous noncoding RNAs that negatively regulate 
gene expression via degradation or inhibition of their target mRNAs. It 
has been proposed that miRNAs regulate more than 30% of the protein-
coding part of the human genome [29]. Overall function of miRNAs 
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is to alter cellular phenotypes via modulation of protein expression 
or to down-regulate protein expression when needed. Therefore, miRNAs 
are considered to be important regulators of cellular function in health 
and disease [29]. In the heart, miRNAs have been shown to play 
important roles in different physiological and pathological processes, 
such as cardiac development, myocyte contractility, cardiac fibrosis, 
arrhythmogenesis [30] as well as in the pathophysiology of myocardial 
infarction [31]. Emerging evidence indicates that ischemia induces 
profound changes in miRNA expression in different tissues/organs 
[32]. In myocardial ischemia, expression profiles of miRNAs may differ 
within different areas of the same ischemic heart, depending on the 
location of injury and the nature of the stimulus [32]. For example, it 
has been shown in the infarcted rat hearts that the expression of some 
miRNAs in the border area was much different from that in the infarcted 
area [31]. The roles of different miRNAs are very different in I/R injury; 
some of these such as miRNA-126, miRNA-133 and miRNA-144 have 
been shown to be cardioprotective whereas other miRNAs, including 
miRNA-1 and miRNA-15 have opposite effects. Furthermore, some of 
these like miRNA-21, miRNA-24 and miRNA-29 are proposed to be double-
edged in the processes underlying I/R injury [32,33]. It has also been reported 
that changes in expression of miRNAs occur in late stages of infarction (days 
after coronary occlusion), showing the possible involvement of microRNAs 
in cardiac remodeling and heart failure [34,35]. More recently, it has been 
documented that changes in miRNA expression occur also in the first few 
hours of I/R injury. Additionally, these changes may be either reversed 
or enhanced in hearts exposed to ischemic preconditioning as well as 
postconditioning prior to coronary occlusion [36]. Taken together, both 
mRNAs and miRNAs are important players in cardiac remodeling due 
to I/R injury and seem to be emerging targets of potential therapies in 
management of cardiac diseases.

Inflammatory process in I/R injury
Leukocyte recruitment, platelet aggregation and complement 

activation are also important factors that contribute to I/R injury after 
the blood flow has been re-established to the ischemic myocardium. The 
progression of lethal injury to the myocardium is partially mediated by 
the inflammatory processes, which contribute to the pool of destructive 
proteases and the generation of ROS. Activation of inflammatory 
mediators affects not only cardiomyocytes but also the vascular 
endothelium [37]. In experimental pre-clinical animal studies, the 
inhibition of neutrophil aggregation and activation has shown to limit 
the degree of I/R injury; however, the clinical trials have not proven to be 
as equally adventitious [38]. The degree of I/R injury is also correlated with 
the activation of platelets [39]. Complement activation in the reperfused 
heart recruits more inflammatory cells, compromises the endovascular 
function and impairs blood flow to the recovering myocardium [3]; this 
has been termed as the no-reflow phenomenon. From a more molecular 
point of view inflammatory mediators contribute to the injury of vascular 
endothelium through tumor necrosis factor-α and interleukin-1 during 
the development of I/R injury in the heart [40,41].

Functional changes in the heart
The clinical manifestations of I/R injury include myocyte 

hypercontracture, myocardial stunning, microvascular and endothelial 
dysfunction, arrhythmias and eventually cardiomyocyte necrosis and 
death. The degree of these abnormalities due to I/R injury lasts for 
different time intervals and their long-term impact is related mostly to 
the duration of ischemia before the induction of reperfusion [3]. The 
consequences of I/R-induced injury in the heart are described in Figure 1.

Myocardial hypercontracture and stunning
Myocardial hypercontracture is a direct result of the increase in 

intracellular Ca2+ due to the impaired ion channels, specifically the 
Na+ -Ca2+ exchanger and the Na+ -H+ and Na+ -K+ ATPases in the 
sarcolemmal membrane [42]. Hypercontracture may be initiated by 
intracellular Ca2+ overload as well as ATP depletion and contribute to 
myocardial injury by damaging cytoskeletal structures. The contracted 
cardiomyocytes tear away from adjacent cells breaking the intercellular 
junctions furthering the damage to the sarcolemma of the adjacent cells 
[43]. On the other hand, myocardial stunning is one of the main clinical 
manifestations of I/R; it is characterized by prolonged post-ischemic 
dysfunction of viable ventricle salvaged by reperfusion mostly due to the 
persistence of anaerobic metabolism [3,8]. Experiments have been carried 
out to show that myocardial stunning after 15 minutes of ischemia in 
healthy dog hearts can last up to 48 hours prior to the return of full 
contractility [43]. This has also been reported in humans after exercise 
stress test or balloon angioplasty where diastolic and systolic dysfunctions 
are seen from minutes to days afterward [44].

Microvascular and endothelial dysfunction
The generation of ROS, activation of proteases and inflammatory 

factors are all contributors to microvascular defects and endothelial cell 
dysfunction in the no-reflow phenomenon. In fact, the recovery of the 
myocardium, specifically contractile reserve and function are dependent 
on the integrity and preservation of the vascular endothelium 
[45]. Endothelial cell dysfunction is characterized by impairment of 
vasodilatation and an exaggerated response to vasoconstrictors such 
as endothelin-1 and ROS, which reduce blood flow throughout the 
coronaries prolonging the ischemic time [46]. Additionally, endothelial 
cell dysfunction allows the expression of important mediators of the 
inflammatory response for neutrophils and platelets [47]. Platelets that 
become activated due to endothelial cell dysfunction contribute greatly 
to the size of infarct. When P-selectin, a cell adhesion molecule 
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Figure 1: Schematic design describing the consequences of I/R injury 
in the heart.
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for platelets, knockout mice were compared with wild-type mice 
after certain periods of ischemia it was found that the mutants had 
significantly smaller infarct size then wild-type and that the number 
of activated platelets were directly correlated to the ischemic time 
[48]. Currently, one of the main stays of Myocardial Infarction (MI) 
treatment is aggressive antiplatelet therapies with aspirin, clopidogrel 
and glycoprotein IIb/IIIa inhibition.

Cardiac arrhythmias
Arrhythmias, particularly accelerated idioventricular rhythms, 

are common in patients during periods of post ischemia [49-51]. 
Arrhythmias usually occur during the first minutes of reperfusion but are 
rarely serious. Sustained Ventricular Tachycardia (VT) and Ventricular 
Fibrillation (VF) are usually secondary to prolonged occlusion as 
seen in the no-reflow areas [52,53]. The majority of the arrhythmias 
are caused by microvascular damage, stunning and swelling of cells 
and electrolyte imbalances within the cytosol of myocytes [54]. In 
particular, calcium influx into the cell post reperfusion and eventual 
restoration of ATP stores can cause the calcium dependent arrhythmias 
[55]. Angiotensin II (Ang II) receptors have also been implicated in 
the reperfusion arrhythmias; Harada et al. [56] showed that Ang II type 
1a receptor (AT1a) knockout mice had less post ischemic arrhythmias 
compared to wild-type mice with similar infarct sizes. The wild-type 
mice also responded to AT1 receptor antagonist, which blocked the 
reperfusion-induced arrhythmias in the ischemic heart [56].

Cardiomyocyte necrosis and apoptosis
The last and most devastating effect of the reperfusion injury is 

cardiomyocyte death due to both necrosis and apoptosis. Some 
animal studies have revealed that up to 50 percent of infarct size 
can be contributed to the I/R injury [3,8]. This is due mostly to the 
destruction of intracellular organelles the swelling and rupture of cell 
membrane leading to necrosis. However, the degradation and release 
of mitochondrial proteins leads to apoptosis, a process that is more 
controlled and involves protein breakdown and DNA fragmentation [57]. 
The process of apoptosis in I/R hearts is a target for some therapies.

Current and Potential Therapies
Our knowledge about the pathophysiology of I/R injury has significantly 

improved in the past 40 years but we have not bridged that with the ability 
to effectively reduce the I/R-induced complications in patients after MI. 
Currently, the most effective therapy is decreasing the total duration 
of ischemic time in patient with MI when subjected to coronary artery 
angioplasty or cardiac bypass surgery. However, some of the reasons 
that other interventions are less successful because of the multiple 
mechanisms involved and thus targeting anyone pathway during the 
development of I/R injury is an over simplification. Additionally, different 
therapies may have underwhelming results because their administration 
is not at the optimal time to have an impact on cardiomyocytes. Many 
of the pre-clinical studies that focus on animal models may not be 
accurately simulating those required for humans. Animals are also 
not administered the risk reduction medications, such as angiotensin 
converting enzyme inhibitors, beta-adrenoreceptor blockers or anti-
platelet agents, prior and post induced ischemic events. These I/R-
induced events in animals are also performed under anesthesia, 
which may have some impact on the inflammatory response. In 
humans, patients have usually been experiencing angina prior to the 
injurious event, potentiating up-regulation of protective mechanisms 
such as nitric oxide or heat shock proteins. We also know that although 
the inflammatory cells that contribute to I/R injury are involved in the 
healing process, therefore targeting the inflammatory mediators and cells 
may have unwanted results. Nevertheless, there has been ample 

amount of research into several therapies to reduce or prevent the 
impact of I/R injury on the cardiac myocytes. Different current and 
potential therapies for the salvage of I/R injury are shown in Figure 2.

Antiplatelet therapy
A main stay of treatment at the time of MI is to inhibit platelet 

activation. Activated platelets contribute to microvascular injury and 
continued ischemia [58]. These medications are also beneficial at 
the time of reperfusion as a means to minimize endothelial cell injury 
and reduce the no-reflow phenomena [59]. Another form of platelet 
inhibition is through glycoprotein IIb/IIIa inhibitors such as abciximab, 
eptifibatide, or tirofiban. A meta-analysis looking at glycoprotein IIb/IIIa 
inhibitors has shown that the addition of these drugs has improved 
ST segment resolution. However, animal trials using trapidil, a potent 
antiplatelet drug, are designed to impairing not only the activity of 
the platelets but also their migration to the injury area [60]. Liu et 
al. showed that rabbits who were exposed to different periods of 
ischemia and given trapidil, had a significant decrease in the ROS-
malondialdehyde levels and increase in protective superoxide dismutase, 
as well as decrease in the expression of apoptotic signaling protein bax 
[61]. Antiplatelet drugs continue to be important in management of MI 
but no drug individually in clinical trials has shown large benefits in I/R 
[62].

Vasodilators and adenosine
There has been extensive research as well as clinical trials in the past 

thirty years investigating the effects of vasodilatory agents including 
adenosine on I/R injury. Adenosine has properties that make it an 
attractive therapeutic agent in this condition because it also serves as a 
substrate for the formation of ATP to replenish its diminishing stores in 
the ischemic myocardium. Adenosine is known to exert microvascular 
dilatation and reduce inflammation; the information gained from 
animal models has resulted in clinical trials [63-65]. Acute-Myocardial 
Infarct Study of Adenosine (AMISTAD) trial [66] has shown that 
treatment of the acute MI patients with adenosine was associated 
with significant reduction in infarct size, but only in anterior locations. 
In fact, the adenosine-treated group had a trend toward more major 
adverse events, such as; death, re-infarction, stroke and heart failure, 
as compared with the placebo group. Another trial that investigated the 
left-ventricular systolic and diastolic functions before discharge, showed 
no difference in placebo versus adenosine groups [67]. However, there 
was a trend toward lower mortality in the adenosine-treated group at 
12 months. It is pointed out that the AMISTAD II trial investigated 
intravenous adenosine administration at low and high doses during 
primary reperfusion, fibrinolytic therapy or angioplasty, for acute anterior 
ST elevation MI versus placebo [68]. The nuclear imaging assessment 
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Figure 2: Outline of current and potential therapies in the management 
of patients with I/R injury.
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of infarct size showed significantly lower areas in the high-dose group 
than placebo. However, there was no reduction in the combined clinical 
end point of heart failure or overall mortality at 6 months follow-up, 
but there was a trend toward fewer occurrences. The intracoronary 
administration of adenosine to patients undergoing angioplasty for 
acute MI was also investigated by Marzilli et al. [69] who found that 
intracoronary adenosine administration resulted in significantly lower 
creatine kinase levels and greater improvement in regional contractile 
function on echocardiography 1 week after the treatment. On the other 
hand, the PREVENT-ICARUS trial showed no benefit of pre-procedural 
intracoronary adenosine provided in terms of procedural myonecrosis 
[70]. Thus the evidence behind administration of adenosine either 
intravenous or intracoronary is varied and it appears that there is not 
enough support to use this agent as a mean to reduce clinical events or I/R 
injury at the time of PCI. On the other hand, some vasodilators such as 
sydnonimine, a class of Nitric Oxide (NO) donors, as well as Angiotensin 
Converting Enzyme (ACE) inhibitors have been shown to decrease 
the infarct size in animal models [71-73]. NO reduces infract size but 
whether this translates to an improvement in long-term functional 
benefit remains to be investigated. Nonetheless, ACE inhibitors have 
been shown to exert beneficial action post ischemic event, specifically 
scavenging free radicals and vasodilatation of the coronary arteries [74].

Ion channel modulation
Dysfunction of transmembrane ion channels is considered to be a major 

contributor to I/R injury mainly through changes in pH and intracellular 
Ca2+ concentration. Therefore, these channels are potential targets for 
therapy to reduce the impact of reperfusion on cardiomyocytes. 
Na+ -H+ exchange inhibitors are helpful in the preservation of intracellular 
pH and Ca2+ concentration. It was found that the inhibition of Na+ 
-H+ exchange in animals led to a reduction in infarct size [75]. A 
clinical trial with 100 patients undergoing PCI for acute anterior MI 
were administered cariporide, a selective Na+ -H+ exchange inhibitor, 
or placebo showed significantly better ejection fraction in the treated 
group versus placebo at 3 weeks and there was less myocardial enzyme 
release in treated patients [76]. However, another clinical trial including 
1,389 acute MI patients undergoing reperfusion therapy evaluated the 
effect of eniporide, another selective Na+ -H+ exchange inhibitor, showed 
no improvement in clinical outcome for treatment versus placebo 
groups [77]. In a subgroup analysis there was a significant reduction in 
severe heart failure in patients who were reperfused more than 4 hours 
after onset of symptoms and received high-dose eniporide. Ranolazine, 
an inhibitor of late Na+ channels, has been shown to decrease 
Na+ dependent intracellular Ca2+ overload in I/R injury [78,79]. This 
reduction in intracellular Ca2+ has shown to be effective in chronic 
angina as well as decreasing the infarct size in acute MI [80]. A study by 
using a porcine model of I/R injury showed that ranolazine administered 
with or without propranolol improved left ventricular end-diastolic 
pressure and led to lower ROS production as well as more preservation 
of mitochondrial structural components including decreased opening 
of MPTP [81]. It should be mentioned that K+ ATP channels have 
been shown to improve outcomes in the ischemic preconditioning model 
where up-regulation of these channels aids in restoring the ion gradient 
and reducing the infarct size after true ischemic events [82]. Nicorandil, 
a K+ ATP channel opener, was investigated in a couple of small clinical 
trials, showing that nicorandil treatment improved regional wall motion 
abnormalities and was associated with fewer serious in-hospital events 
including arrhythmias and severe heart failure [83,84]. However, there 
needs to be more clinical trials investigating these cation pump inhibitors 
to better understand their effects in patients with acute MI.

Inhibitors of inflammation
Inhibition of the inflammatory process, specifically the activation 

and accumulation of neutrophils has had mixed evidence for reduction 
of I/R injury post MI [85,86]. This may be secondary to decreased 
drug availability to injury site or that the activation of inflammatory 
mediators has already occurred prior to the intervention. The complexity 
of the inflammatory process may also contribute to underwhelming 
improvements in function outcome in patients given treatment with 
these inhibitors. Inhibition of complement activation has also been 
investigated; two early clinical trials [87,88] showed no reduction of 
infarct size when patient were administered an anti-C5 monoclonal 
antibody, pexelizumab, as compared with placebo. More recently a 
clinical trial with 2885 patients at reperfusion post MI, were divided to 
receive either pexelizumab bolus or infusion versus placebo. There 
were no differences in a 30-day mortality observed in placebo versus 
treatment groups and also the incidence of shock and heart failure was 
similar in both groups [89]. This could be a result of late administration 
of the drug or lack of activity at the site of interest but either way 
further trail are unlikely unless a new method of delivery is developed. 
Another immunosuppressive agent that has shown to inhibit the opening 
of MPTP is cyclosporine; the effect of cyclosporine on MPTP is not 
selective and can also inhibit phosphatase calcineurin that may have 
larger more detrimental effects [90,91]. A small clinical study showed 
an intravenous dose of cyclosporine given prior to PCI decrease 
creatinine kinase and translated to a 20% reduction of infarct size in a 
subset of patient [92].

Antioxidant therapy
The role of ROS in the development of I/R injury has encouraged 

interest in the use of antioxidants as a means to scavenge ROS to attenuate 
their effects. Even though animal studies have shown to be promising, 
the evidence that antioxidant show clinical improvement in infarct size 
or decrease in heart failure is mixed [92]. Some of antioxidants that have 
been investigated are erythropoietin (Epo), estrogen, heme oxygenase and 
hypoxia induced factor-1 [93-96]. Epo has been extensively investigated, 
including a met-analysis in 2012 in which authors found 13 clinical 
trials with 1564 patients [96]. The authors found that administration 
of Epo did not improve left ventricular ejection fraction and that there 
was no effect on infarct size (as assessed by cardiac MRI). Epo group 
did not show a decrease in risk of adverse events or risk of heart 
failure, and all causes mortality was similar in both groups. The lack 
of clinical efficacy for antioxidants in I/R injury is most likely a result of 
the multiple mechanisms that contribute to this injury and attenuation 
of one pathway may not be clinically significant. Another reason may be 
that concentration of antioxidants at the infarction site may be decreased 
by microvascular injury when administered intravenously. In view of 
the rapid nature of ROS action for the induction of cardiac damage, 
the antioxidant therapy may not exert beneficial effects from the 
treatment viewpoint but instead may be of great value from the preventive 
viewpoint.

Protease inhibitors
Most pre-clinical trials have focused on calpain and Matrix 

Metalloproteinases (MMPs), specifically by administration of their 
inhibitors prior to the induction of I/R injury. Calpain inhibitors 
such as MDL-28170 and SNJ-1945 have been administered in the 
animal models and have shown modest decreases in infarct size or 
improvement in the left ventricular function [97,98]. Common MMP 
inhibitors are doxycycline, 1-, 10-phenanthroline and GM6001. In a 
review by Hughes and Schulz [99] for the pre-clinical studies of MMP 
inhibition, a protective effect of inhibition of MMP-2 on left ventricular 
function was indicated. There was, however, a modest improvement in 
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other clinical features such as myocardial performance, infarct size and 
mortality. MMP-2 inhibitors have been investigated in 4 clinical trials 
with the inhibitor doxycycline. None of them has shown any benefits 
in regards to left ventricular function or decreased infarct size [99]. 
A criticism of proteases inhibitors trials may be that there is a 
disconnection between pre-clinical and clinical investigations; specifically 
the pre-clinical trials address to replicate a clinical environment. For 
example most trials on animals perform a short to medium term MI 
which may not truly represent the I/R injury during thrombolysis or PCI. 
On the other hand, in isolated cardiomyocytes, inhibition of MMP-2 
with siRNA has shown to be protective against I/R injury suggesting an 
important role of MMP-2 in contractile dysfunction in cardiomyocytes 
subjected to I/R injury [100].

Ischemic conditioning
In addition to different pharmacological therapies used in 

management of patients with I/R injury, it should be mentioned 
that the heart has its own potential to increase the tolerance to 
ischemia and reduce the severity of I/R injury by the activation of 
endogenous cardioprotective mechanisms. This type of protection was 
first demonstrated in 1986 by Murry et al. [101], who found that brief 
episodes of ischemia and reperfusion could protect the myocardium from 
subsequent prolonged ischemia, termed ischemic preconditioning. 
Since then, ischemic preconditioning-induced cardioprotection was 
observed in different animal species, including humans [102-104]. A 
broad scale of molecular mechanisms has been proposed to be involved in 
ischemic preconditioning including stimulation of adrenergic receptors 
[105], modulation of the activity of different protein kinases [106,107], 
release of NO [108] and production of ROS [109]. Additionally, it 
has been shown that the application of brief repetitive episodes of 
I/R reduces the extent of I/R injury also when applied during early 
reperfusion, termed ischemic postconditioning [110,111]. Different 
animal studies have shown that postconditioning has similar effects 
as preconditioning, involving the activation of survival protein kinases 
[112,113], whereas the protective effect of postconditioning includes 
decreases in total number of necrotic and apoptotic cells leading to 
smaller infarct sizes [114]. However, translation of ischemic pre-
conditioning and post-conditioning to clinical settings is limited due 
to time limitation and invasiveness.

Another form of ischemic conditioning, remote ischemic 
conditioning, a term introduced by Przyklenk et al. in 1993 [115], 
when cardioprotection is achieved by ischemic insult on remote organ 
or occlusion of remote vessel in the same organ, seems to be the more 
promising strategy than classical ischemic conditioning. Further 
research revealed that the remote ischemic conditioning protection 
can be induced by ischemia of broad scale of distant tissues (either 
cardiac or non-cardiac) and evokes systemic protection against the acute 
I/R injury [116-118]. A growing number of experimental studies 
using animal models have demonstrated beneficial effects of brief limb 
ischemia in remote conditioning of the heart [119,120]. Moreover, this 
inter-organ protection was achieved by limb ischemia in humans [121]. 
Unfortunately, despite of the successful results achieved by different 
types of ischemic conditioning in experimental studies, the translation 
of these to clinical practice is limited and results are not conclusive. 
The most probable reason is that ischemic conditioning is a “healthy 
heart phenomenon” and failed in the case of patients with different 
comorbidities such as hypertension, hyperlipidemia, diabetes, insulin 
resistance, heart failure, altered coronary circulation and aging, as 
well as co-medications including statins, nitrates and antidiabetic 
drugs, that all together may modify the patient’s response to 
cardioprotective interventions [122].

Conclusions
I/R injury of the heart represent one of the leading causes of morbidity 

and mortality worldwide. Various procedures such as coronary 
angioplasty, cardiac by-pass surgery, cardiac transplantation, and 
thrombolytic therapy in addition to delayed opening of collaterals in 
the heart after an ischemic insult are associated with development of the 
I/R injury. This injury leads to impaired heart function and myocardial 
cell damage. Numerous mechanisms including occurrence of oxidative 
stress, Ca2+ -overload, alterations in gene expression, increased activities 
of proteolytic enzymes and activation of inflammatory processes have 
been identified to be involved in the I/R injury and proposed as a 
potential targets for its therapy. Different pharmacologic agents such 
as anti inflamatory drugs, vasodilators, cation channel inhibitors and 
antioxidants have been tested in animal models as well as in clinical trials 
for the prevention and treatment of the I/R injury. Many of these agents 
have been shown more or less efficient in preventing the development 
of the I/R injury; however, their efficiency in the treatment of I/R is not 
conclusive. Therefore, development of the new pharmacologic agents 
with therapeutic potential in management of patients with I/R injury 
is needed. Although ischemic conditioning including pre- and post-
conditioning as well as remote conditioning seem to be the promising 
strategies for decreasing the negative consequences of I/R injury, their 
translation into the clinical practice did not produce satisfactory 
results to date. Nonetheless, the remote ischemic conditioning has 
been proposed to have emerging significance with respect of clinical 
interventions. Thus, revealing of molecular mechanisms included 
in remote ischemic conditioning may produce satisfactory results in 
translation of this endogenous cardioprotection to clinical practice in the 
near future. It is mentioned that Ibanez et al. [123] have also indicated a 
great success in reducing ischemic injury but have emphasized that the 
time has come to focus our efforts on future therapies for reducing the 
reperfusion injury.
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