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Abstract
Mortality rate in patients that suffer heart failure is approximately 50 per cent in a 5-year follow up, exceeding the mortality detected in patients 

with cancer. Angiotensin Converting Enzyme (ACE) inhibitors and beta-blockers are effective to treat Myocardial Infarction (MI), but there is no 
effective therapy to reverse the disease. In the last two decades, cell therapy has emerged as an important treatment to be considered for patients 
with MI. In the present Review, I will summarize the diversity of cell therapies that have been used in pre-clinical and clinical studies, discussing 
the pros and cons of each therapy.
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Introduction

Cardiovascular disease is the main cause of mortality worldwide 
accounting for 17.3 million deaths in 2008 and an estimated number of 
23.3 million in 2030, according to the World Health Organization [1]. The 
most common cardiovascular disease is heart failure due to Myocardial 
Infarction (MI). The reduction or complete deprivation of oxygen and 
nutrients experienced after an ischemic infarct leads to a massive death of 
cardiomyocytes in the affected area. This region is rapidly repopulated with 
migrating myofibroblasts, responsible for the deposition of extracellular 
matrix proteins that will form the scar area. Different strategies have been 
tested in pre-clinical studies, in order to delay or interfere with the adverse 
ventricular remodeling and recover the loss of working myocardium. 
Delivery of growth factors and cytokines [2-5], in vivo reprogramming of 
myofibroblasts and dividing non-cardiac cells into cardiomyocytes [6,7], 
or cell therapy are among the treatments that have shown marginal results.

Two decades ago, the publication of studies demonstrating that 
C2C12 myoblasts can engraft in the murine heart [8] and mouse fetal 
cardiomyocytes can engraft and form intercalated disks with host 
myocardium [9], was a milestone that triggered the first studies using 
cells as a treatment for MI. Since that time, thousands of papers have been 
published in the field (more than five thousand references retrieved from 
PubMed introducing the terms “Cell therapy for Myocardial Infarction”) 
and dozens of clinical trials.

 In this review I will give an update of the most relevant work performed 
using cell treatment after MI, discussing challenges, advantages and 
disadvantages of each approach.

Cell Therapy Strategies
Bone marrow cells

In the late 90’s and early 2000’s, Bone Marrow Cells (BMCs) emerged 
as the master key for regenerative medicine. They were reported to be 
capable of differentiating or transdifferentiating in vivo into hepatocytes 

[10], brain cells [11] and cardiomyocytes [12,13] among other cell 
lineages. Differentiated cardiomyocytes even showed positive staining 
for the gap junction protein connexin 43 (Cx43) [12], as a proof of 
functional connection between the new formed muscle cells in the scar 
area of infarcted mice. However, attempts to reproduce these results by 
other groups were unsuccessful [14-17]. In the particular case of the heart, 
9-10 days and 28-30 days post-implantation, donor BMCs were positive 
for the pan-hematopoietic marker CD45 [15,17] and the granulocyte 
marker Gr1[15]. Nevertheless, there was no evidence of cardiac, smooth 
muscle cell or endothelial cell transdifferentiation [15], in contrast with 
previously published studies [12,13]. Moreover, different groups reported 
that the process described in vivo as BMC transdifferentiation was actually 
the product of cell fusion between BMCs and host organ cells [17-21], 
shattering the proposed plasticity of BMCs.

The study by Orlic et al. [12] describing an occupancy of 68% of 
the infarcted area by transplanted BMCs and enhanced left ventricular 
performance of animals in which they were implanted, prompted many 
groups to initiate the first clinical trials [22,23]. TOPCARE-AMI was 
the first randomized pilot clinical trial that involved 59 patients divided 
into two groups receiving unfractionated BMCs or circulating progenitor 
cells [22,24]. In a 5-year follow-up report [24] the authors detected no 
differences between both groups of patients but a clear improvement in the 
left ventricular ejection fraction (LVEF) at 4 months that was maintained 
until the 5 years with respect to the baseline, in a cohort of 31 patients. 
Unfortunately, the design of this study lacked a control group to compare 
the relevance of the obtained results [22,24]. In the ASTAMI clinical trial, 
a 3-year follow-up [25] showed no differences in LVEF between control 
and BMCs infused groups. Interestingly, they observed an increase in 
LVEF at 3 months in both control and cell-treated groups, highlighting 
the importance of controls in experimental designs. From more than a 
dozen clinical trials in progress, only 4 of them have provided long term 
results (>2 years).

 ASTAMI [25] and BOOST [26] showed no changes in BMCs treated 
patients with respect to the control group at 3 and 5 years respectively. 
REPAIR-AMI [27], although did not find LVEF differences, it did find 
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a significant reduction in infarct size and increased wall thickening of 
infarcted regions 2 years after BMCs implantation. The results from the 
fourth clinical trial, TOPCARE-AMI, with a 5-year follow-up have been 
described above [24]. More detailed reviews about clinical trials, including 
the cell delivery numbers and routes of administration can be found in 
Behfar et al. [28] and Pavo et al .[29]. 

Clinical trials with BMCs have shown a very modest effect as shown 
in a recent meta-analysis performed in 16 clinical trials [30] with only 
a 2.55% increase in LVEF in patients treated with BMCs with respect 
to the corresponding controls. Strikingly, another meta-analysis study 
[31] considering 49 clinical trials, reported discrepancies in the vast 
majority of the trials (all except 5). In this study, the authors showed a 
correlation between the number of discrepancies per trial and the effect 
on ejection fraction size, concluding that in free-discrepancies clinical 
trials, BMCs had zero effect on ejection fraction [31]. In a recent meta-
analysis, performed in 12 randomized studies with intracoronary cell 
administration of autologous cells, and using original Individual Patient 
Data (IPD), authors concluded that no benefit was observed in cell-treated 
patients [32]. 

 In summary, BMCs’ therapy has been demonstrated to be safe and 
feasible, but showed reduced [30] or no effect [31, 32] in patients’ LVEF. 

Myoblasts
In 1961 Mauro described a population of cells surrounding 

differentiated myofibers that he named “satellite cells” [33]. These cells lie 
beneath the basal lamina of myotubes and when cultured in vitro they 
differentiate to myoblasts [34]. Myoblasts have been studied exhaustively 
as cell therapy for MI, in part due to their ability to survive, proliferate and 
finally differentiate to skeletal muscle in the harsh environment present in 
the infarcted heart [35]. Undifferentiated myoblasts express N-cadherin 
and Cx43 [36], proteins that are involved in cell adhesion and gap junction 
formation in intercalated disks. Nevertheless, both proteins are lost when 
myoblasts differentiate into skeletal myotubes [36], and it has been 
demonstrated that engrafted myotubes are electromechanically isolated 
from host myocardium [37]. Several groups have reported in pre-clinical 
studies the beneficial effects of implanted myoblasts in different MI 
models [38, 39]. Considering that myoblasts do not transdifferentiate into 
cardiomyocytes in infarcted animals [40], it has been suggested that their 
mechanism of action is through secretion of factors that interfere with the 
adverse ventricular remodeling [41]. Myoblasts’ translation to the clinic 
was performed for the first time in 2001 [42] showing the feasibility of 
myoblast implantation in one patient with MI. Since 2001, several clinical 
trials were started. In a four-year follow-up study, delivery of myoblasts 
in patients undergoing concurrent Coronary Artery Bypass Grafting 
(CABG) or Left Ventricular Assist Device (LVAD) implantation was 
compared [43]. Patients with myoblast implantation and CABG presented 
an improvement in LVEF and tissue viability. However, it is difficult to 
interpret these results since a control group is missing in the study. In 
other clinical trials in which control groups were included, patients with 
myoblast implantation did not have any effect in LVEF [44,45]. In both 
studies, the presence of ventricular arrhythmias in the treated group was 
the main concern exposed [44,45].

Adipose tissue-derived cells
Adipose tissue is composed of mature adipocytes and a Stromal 

Vascular Fraction (SVF). The SVF contains vascular cells and a population 
of Mesenchymal Stem Cells (MSCs). MSCs have potential to differentiate 
spontaneously into cardiomyocytes in vitro, with rare events described 
[46], and endothelial cells in intro and in vivo [47-49]. Adipose-tissue 
Derived Cells (ADCs) represent an attractive strategy for cell therapy due 

to the large amount of cells that can be isolated from each patient with a 
minimally invasive technique as liposuction [50]. Pre-clinical studies in 
mouse [51] and pig [49] using cell sheet [51] or direct injection in the 
coronary artery [49], have shown increased LVEF in animals treated with 
adipocytes [51] or Adipose-tissue Derived Stem Cells (ADSCs) [49]. 
When compared with BMCs, both BMCs and ADSCs groups presented 
a significant increase in LVEF, but only ADSCs presented a significant 
increase in wall thickness with respect to control group [49]. Of interest is 
the fact that neither ADSCs nor BMCs treated pigs showed cardiomyocyte 
differentiation of donor cells [49]. The proposed mechanisms of action 
of adipose tissue-derived cells are angiogenesis [49] and secretion of 
paracrine factors like adiponectin, who may regulate extracellular matrix 
production by myofibroblasts [51].

On the clinical side, there is only one study reported with a very 
modest effect of adipose tissue-derived cells: the PRECISE trial [50]. This 
randomized, placebo-controlled and double-blinded study enrolled 27 
patients: 21 treated with Adipose-derived Regenerative Cells (ADRCs, 
the SVF of adipose-tissue), and 6 controls. No differences were detected 
in LVEF at different time points within the group and neither between 
groups. Authors reported a significant increase in left ventricular total 
mass in ADRC-treated patients at 6 months with respect to the baseline 
[50].

Cardiac progenitor cells
A Cardiac/Cardiovascular Progenitor Cell (CPC) is a cell that, after 

losing its stemness properties, is committed to differentiate at least into 
the three main lineages of the cardiovascular system: cardiomyocytes, 
endothelial cells and smooth muscle cells. Many different laboratories 
have claimed the isolation of CPCs from fetal [52] and adult hearts 
[52,54], or after Embryonic Stem Cells (ESCs) in vitro differentiation [55, 
56]. CPC isolation based on cell surface markers and their existence in the 
adult heart has been a continuous matter of debate. The most common 
markers used to isolate adult and ESC-derived CPCs are: 1) c-kit (also 
known as stem cell factor receptor; SCFR or CD117), 2) the stem cell 
antigen-1 (Sca1) and 3) the fetal liver kinase-1 (Flk1, known as well as 
vascular endothelial receptor 2 or KDR in humans). The three surface 
markers are present in hematopoietic stem cells [57-59]. Researchers that 
question about their true CPC identity consider that these CPCs found in 
adult hearts might be just circulating bone marrow-derived cells homing 
in the heart. 

Recently, using lineage tracing studies, a group has shown that c-kit 
may not be appropriate to identify CPCs since they minimally contribute 
to cardiomyocytes in the heart [60]. Although a Sca1 human orthologue 
has not been identified yet, scientists have isolated cells from adult human 
hearts using an antibody against mouse Sca1 [52]. Sca1+ cells were 
able to differentiate in vitro into cardiomyocytes, although using non-
conventional methods for cardiac differentiation: demethylating agent 
5-azacytidine (5-aza) [52]. Notably, 5-aza induces cardiac differentiation 
in the mouse embryonic carcinoma cell line P19 [61], murine BMCs [62] 
and human mesenchymal stem cells [63]. Therefore, several cell types 
from diverse origins are able to differentiate into cardiomyocytes in the 
presence of 5-aza.

Lineage tracing studies have provided more information about Sca1+ 
derived progeny [64]. In this study, Sca1-derived cardiomyocytes were 
first detected, at low numbers, 2 months after birth, but Sca1+ cells were 
unable to mobilize to the infarcted area after MI [64]. The virtual absence 
of Sca1-derived cardiomyocytes until postnatal stages reinforces the idea 
that at least fetal cardiomyocytes are not derived from Sca1+ cells. Flk1 
lineage tracing studies have shown that, in the heart, they contribute 
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mainly to the endocardium, although some cardiomyocytes were also 
stained [65]. However, Flk1 may not be an optimal marker to isolate ESC-
derived CPCs since it has been recently reported that it is an early marker 
of hepatocyte progenitor cells [66].

In 2003 Anversa’s laboratory described the presence of c-kit+ cells 
in adult rat hearts, which had the potential to differentiate in vitro to 
cardiomyocytes, smooth muscle cells and endothelial cells [53]. According 
to the results presented, these c-kit+ cells, after in vitro expansion, were 
able to engraft and differentiate into cardiomyocytes in a rat model of MI, 
improving the LVEF of infarcted animals [53]. c-kit+ cells extracted from 
adult hearts were translated to clinic under the name of SCIPIO [67]. This 
clinical trial, with 16 patients treated with cells and 7 control patients, 
reported very encouraging results. In patients treated with cells, the LVEF 
increased 8.2 and 12.3 units at 4 months and 1 year respectively [67]. The 
reader should be aware that an expression of concern has been raised by 
Lancet editors regarding this work [68].

Anversa’s group results were first challenged after a new study reported 
that c-kit+ cells contribute to myocyte formation in neonatal but not in 
adult MI [69].

In 2007, Eduardo Marban’s group described the isolation of cells 
from endomyocardial biopsies that form cardiospheres after expansion 
on poly-D-lysine coated plates [54]. These Cardiosphere-Derived Cells 
(CDCs) are a heterogeneous population of cells that express among 
other markers, c-kit and CD105 and do not contract spontaneously in 
culture [54]. Extensive literature has been generated using the so called 
cardiospheres, showing improvement of heart function in different animal 
models of MI [54,70]. CDCs (CD105+ cells) are under study in the clinical 
trial CADUCEUS [71]. In this study 31 patients were randomized, 23 of 
them treated with autologous CDCs (17 after removing some technical 
failures) and 8 controls. No differences were found at 1 year in LVEF and 
the only significant effect found was decreased scar size in CDC group 
versus control group at 1 year [71].

Although both clinical trials have proven that cells extracted from 
adult hearts, either c-kit+ [67] or CD105+ cells [71], are a safe therapy for 
patients with MI, many more pre-clinical studies are necessary in order to 
identify cell surface markers for the unambiguous isolation of authentic 
CPCs capable of differentiating into cardiomyocytes with conventional 
differentiation methods.

ESC-derived Cardiomyocytes
Another strategy being pursued by scientists, still in pre-clinical studies, 

is the replacement of dead myocardium with fully differentiated cardiac 
cells. Initial studies were conducted using fetal and adult cardiomyocytes 
[72-74] showing long-term engraftment of fetal and neonatal [72-74] 
but not adult [73] cardiomyocytes in the infarcted area. Remarkably, rat 
neonatal cardiomyocytes were rod-shaped 8 weeks after implantation, 
with presence of N-cadherin and Cx43 in the cell-cell contact regions, 
resembling adult cardiomyocytes [73].

The isolation in 1998 of the first human ESCs (hESCs) lines from 
human blastocysts [75] and the posterior development of the initial 
protocols for human cardiac differentiation [76] opened up the door for 
exploring the potential of hESC-derived cardiomyocytes (hESC-CMs) for 
MI. hESC-CMs were able to couple electromechanically with neonatal rat 
cardiomyocytes in vitro and pace the heart in a swine model of complete 
atrioventricular block [77]. Later, hESC-CMs tested in rat models of MI, 
presented long-term engraftment and improvement of heart function with 
respect to control rats [78,79]. In these studies hESC-CMs were injected 

at 4 days [78] or 7-10 days [79] after coronary ligation in the presence 
[78] or absence [79] of a cocktail of prosurvival factors. Interestingly, 
while one of the studies reported that the majority of the grafts were in 
the infarct border [79], the presence of grafts in the other one was mainly 
inside the scar area [78]. The successful results obtained in rats were 
reproduced in bigger animals with slower heart rates. Using engineered-
hESC-CMs expressing the calcium sensor GCaMP3, researchers were 
able to demonstrate that hESC-CMs couple electromechanically with 
host myocardium in a guinea pig [80] and non-human primate [81] 
models of MI. Although the results obtained in the guinea pig model were 
encouraging and researchers observed arrhythmia-suppressive effects of 
hESC-CMs grafts [80], the presence of arrhythmic processes was raised 
as one of the major concerns found in non-human primates treated with 
hESC-CMs [81]. Despite the considerable engraftment of hESC-CMs, 
covering 40% of the scar volume, and the electromechanical graft-host 
coupling observed in non-human primates [81], the arrhythmic events 
probably due to the inability of hESC-CMs to acquire a mature phenotype 
in vivo, may delay the translation of hESC-CMs to clinical studies.

The ethical concerns raised after the isolation of hESCs from human 
blastocysts [82] have been overcome with the advent of the induced 
pluripotent stem cell (iPSC) technology [83]. Currently, iPSCs can be 
generated using transgene-free, genome integration-free technologies 
like the RNA-based Sendai virus vector [84]. After hESC/iPSC 
differentiation, a few cells may remain undifferentiated; being a potential 
source for teratoma formation. Different methods attempted to eliminate 
undifferentiated cells, and recently, Lee et al. [85] developed a clinical-
grade strategy using small molecules against survivin. These molecules 
selectively eliminate undifferentiated cells, without interfering with the 
differentiation process [85]. Human iPSC-cardiomyocytes can be obtained 
with high purity (90%) in the laboratory [86] and could be readily used 
applying patient-specific therapy, once the arrhythmic events reported in 
non-human primates [81] have been solved.

Conclusions
Since the first studies, performed almost two decades ago, that proved 

the feasibility of cell therapy [35,72] as a new approach to be considered in 
MI treatment, a wide diversity of cell types have been tested in pre-clinical 
studies. BMCs, ADCs and myoblasts were attractive sources because of 
the possibility of extracting large amounts of cells for autologous therapy. 
BMCs and ADCs showed beneficial effects in cardiac function through 
the induction of angiogenesis and secretion of paracrine factors in the 
infarcted heart [49,51,87]. Myoblasts proliferate and differentiate in MI pre-
clinical models [35] interfering with adverse ventricular remodeling [41], 
but are not able to couple electromechanically with host cardiomyocytes 
[37]. To date, there is no evidence of BMCs, ADCs or myoblasts-mediated 
induction of host cardiac proliferation and none of them differentiate or 
transdifferentiate into cardiomyocytes in vivo [15,40,49]. 

CPCs’ attractiveness resides in the fact that they can give rise not only 
to cardiomyocytes but also smooth muscle cells and endothelial cells [88], 
with the potential to form blood vessels, which are required for cardiac 
graft survival. Many laboratories have reported the isolation of fetal, adult 
or hESC-derived CPCs [52,53,56] based on cell surface markers that are 
not specific for the cardiovascular lineage [57,60,66]. Close collaboration 
with developmental biology laboratories is required to better help us to 
identify cell surface markers that are unique to CPCs. 

hESC-CMs are able to repopulate large areas of infarcted myocardium 
and couple electromechanically with host cardiomyocytes [81] in a non-
human primate model of MI, positioning them as an excellent cell source 
for future clinical trials. Improvement in cell engraftment, specific isolation 
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of ventricular cardiomyocytes and search for strategies to enhance hESC-
CM maturation in vivo, in order to alleviate ventricular arrhythmic 
processes would help this therapy to jump from bench to bedside. 

Translation of cell therapies into clinical studies has not been as 
rewarding as pre-clinical studies predicted. Different factors may 
be involved in this fact, from techniques used to isolate cells before 
implantation, density gradients [24] and Ficoll [26] to differences in 
number of cells implanted ranging from half million [68] to more than two 
billion [26]. Regarding the number of cells, the POSEIDON trial reported 
an inverse dose response effect in LVEF [89]. It should be considered as 
well that controlled conditions of “patients” in pre-clinical studies cannot 
be achieved in clinical studies.

In summary, cellular therapies for MI have been proven to be safe in 
clinical trials [24-27,50,71], but it is a matter of debate if they confer any 
beneficial effect for patients [30-32]. These results suggest that the race to 
find the ideal cell type for MI is still more open than ever before.
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