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Background
Mixed model approach with pedigree information commonly employed 

to detect and correct for genetic relationship in cross sectional genomics 
research [1]. Since gene expression may change over time repeated 
measures would be more useful for detecting associated genomic signals 
[2]. Dynamic association studies commonly use functional mapping 
approach. However interpreting results from regression coefficients 
of (non) parametric functions may be difficult biologically. Random 
regression coefficient model was suggested for dynamic association 
mapping [3]. However random regression models have limitations for 
obtaining accurate estimates at the beginning and end of the trajectories 
[4].

In addition both of the mentioned models (and those others in the 
literature of dynamic association mapping) needs whole set of observations 
in order to have predictions: this may also create problem as such to wait 
for months (if not years) to obtain predictions. In this study we assumed 
that genomic signal over time could be traced by a random walk- Kalman 
filter model in state space form to obtain longitudinal residuals. Because 
of the Kalman filter we do not have to wait for collecting the whole data 
set to do model evaluations hence estimates becomes available as soon as 
measurements are taken. And because of longitudinal residuals to employ 

in association mapping: biological reasoning could also be deduced easily 
given the signal is genuine.

Recently, we extended the GRAMMAR model of [1] in Bayesian 
context [5]. In this paper we used [6] model for dynamic association 
mapping by including dynamic components using random walk-Kalman 
filter approach to analyze GAW18 dataset. We also extended the model to 
incorporate stationary process by auto regressive structure for dynamic 
gene and environmental effects.

Methods
GAW 18 provided simulated phenotypes for 200 replicates from 849 

individuals by 3 time points. We used Diastolic Blood Pressures (DBP) 
phenotype for association mapping. We analyzed 65519 SNPs from 
chromosome 3 using related 849 individuals for 3 time points of the first 
replicate. 

Quality control
We used 849 pedigreed individuals from chromosome 3 with 65519 

SNPs for association mapping. We excluded 7229 SNPs due to minor 
allele frequency <1%, 208 SNPs due to Hardy Weinberg test (p<0.001), 
and 2 SNPs due to missingness test (p>0.1) leaving 58080 SNPs in the 

Abstract
Background

Linear mixed model with pedigree information commonly employed to detect and correct for genetic relationship in cross sectional genomics 
research. Main aim of this study was to dynamic association mapping by using a random walk-Kalman filter approach for analyzing GAW18 
dataset. We also extended the model to incorporate stationary process by auto regressive structure for dynamic gene and environmental effects.

Methods

We used random walk model and it is given below 
	  2 2

1, (0, ); , (0, )t t t t e t t t t ny N N Aα ε ε σ α α η ηα σ+= + ∞ = +
 
In (1) the first equation is called the observation equation and the second equation 

is called the state equation. We assumed that observations, ty , depends on unobservable quantity, tα , and our aim was to do statistical 
inference on tα  (states) 

Results

Error, genetic and permanent environmental variance components were predicted as 17.3 (0.0006), 10.9 (0.0007) and 8.2 (0.0006) using 
genomic relation matrix for and 18.0 (0.0007), 9.2 (0.0008) and 8.4(0.0006) using pedigree relation matrix for diastolic blood pressure. Rs 
11711953 from time point 1, 2 and 3 is found to be associated with MAP4 gene. 

Conclusions

Probably due to small number of time points the model did not detect all true genomic signals. Genomic relationship matrix gave better inflation 
factors. Random walk is a non stationary process and in this paper we extended the model for stationary case by tuning ∆ parameter. In genomic 
studies failing to taken into account of longitudinal gene and environmental effects over time may lead to either undetection of true signals and/ 
or may also lead to false positives due to stochastic errors.

Keywords: Association mapping; Random walk; Kalman filter; Gibbs sampling

ISSN 2471-4968



 
ForschenSci
O p e n  H U B  f o r  S c i e n t i f i c  R e s e a r c h

Citation: Karacaören B (2015) Dynamic Association Mapping based on a Kalman Filter Model using GAW 18 Data Set. Int J Mol Genet Gene Ther 1 (1):  
http://dx.doi.org/10.16966/2471-4968.101

Open Access

2

analyses [7]. We excluded 44 individuals with too low genotyping leaving 
805 individuals in the dataset. Kolmogrow-Smirnow test used to assess 
normality of the response variables. Time, Sex, smoking status, age and 
pedigree number was included as a fixed effect in subsequent analyses 
based on preliminary analyses using correlations between predictions and 
observations.

Random walk model
 We used random walk model and it is given below 
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In (1) the first equation is called the observation equation and the second 
equation is called the state equation. We assumed that observations, ty , 
depends on unobservable quantity, tα , and our aim was to do statistical 
inference on tα  (states). We assumed constant variances for tε  and tη  
as 2

eσ  and 2
nσ  respectively with independent, identically and normally 

distributed random variables with zero means. We assumed that both 
gene effects and permanent environmental effects. 

For genetic analyses of traits following mixed model is used;

	 epZaZXây pa +++= 				    (2)

where y is the vector of observations, â  is the vector of fixed effects, 
a is the vector of random effects, p is the vector of random permanent 
environmental effects, X, aZ , pZ  are design matrices and e is the vector 
of random residual effects. 2

aσ , 2
pσ , and 2

eσ ; are genetic, permanent 
environment and error variances. A  is the additive genetic relationship 
matrix for the individuals; I  is an identity matrix. A was obtained by the 
coefficient of coancestry matrix using both the genotype and pedigree of 
individuals.

In the following, we show general assumptions used in KF-RW method, 
based on Bayesian principles. Proportional joint posterior distribution 
without constant terms given in (3) using (2) based on following recursive 
relationship [8]; 
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Last line of (3) are product of density of scaled inverted chi-square 
distributions assumed prior for variance parameters. ∆  is assumed to 
be 1 for random walk model. After algebraic manipulations conditional 
distributions could be written as following,
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where in the last two line aQ , pQ  and eQ  stands for quadratic form 
of the respective error terms and DF degrees of freedoms. We ran the 
model with 10,000 iterations using a 5000-iteration burn-in period for 
DBP. To reduce auto-correlation, we sampled every tenth iteration. We 
tried different parameters of inverse Wishart prior distributions to obtain 
residuals.

We used a mixed model to perform genome-wide association analyses 
[9,7] using R software [10]:

		  y = Xb + e				    (4)

where y contains the residuals or random effects from (3), b 
designates the fixed effects (SNP), X and is incidence matrices, and e 
is a vector containing residuals and assumed normally distributed with 

2
eIσ . I is an identity matrix, σe

2 is the residual variance. We used a 
false discovery threshold of 5 % to detect a genomic signal in association 
mapping. We also used cross sectional GRAMMAR [1] approach by each 
time points for comparison purposes. We estimated heritability of DBP 
as 0.299 and 0.259 using genomic coancestry matrix [9] and pedigree 
information respectively.

Results
Analyses were performed without knowledge of the underlying 

simulation model. However, we used the GAW18 answers in discussing 
the results. 

We confirmed the normality using Kolmogrow-Smirnov test. However 
since we employed Bayesian residuals: all response variables transformed 
to be normally distributed (P > 0.01). Time, Sex, smoking status, age and 
pedigree number was included as a fixed effect in subsequent analyses 
based on preliminary analyses using correlations between predictions 
and observations. We found that correlations between predictions and 
observations were highest up to 0.15. Error, genetic and permanent 
environmental variance components were predicted as 17.3 (0.0006), 10.9 
(0.0007) and 8.2 (0.0006) using genomic relation matrix and 18.0 (0.0007), 
9.2 (0.0008) and 8.4(0.0006) using pedigree relation matrix for DBP. DBP 
was simulated with 0.317 heritability whereas genomic kinship estimates 
were found to be closer to its true value (Tables 1-3).



 
ForschenSci
O p e n  H U B  f o r  S c i e n t i f i c  R e s e a r c h

Citation: Karacaören B (2015) Dynamic Association Mapping based on a Kalman Filter Model using GAW 18 Data Set. Int J Mol Genet Gene Ther 1 (1):  
http://dx.doi.org/10.16966/2471-4968.101

Open Access

3

Discussion
Assumptions regarding evolution of gene and permanent environmental 

effects over time might be important. Certain degree of autoregressive 
structure might be more realistic compared with a random walk model. 
We simply tuned the model based on restrictions of parameters space in 
(3) using∆ . We considered two extreme cases for deviation from random 
walk using ∆=0.1 and ∆=0.9. Random walk assumes that gene effects 
could change slowly in both up and down directions over time, ∆=1.0,. 
Autoregressive structure for both gene and environmental effects could be 
introduced by tuning ∆ to obtain stationary distributions. Here the time 
series will be distributed around the mean trajectory.

Error, genetic and permanent environmental variance components 
were predicted as 10.26 (0.0006), 1.98 (0.0001) and 1.98 (0.0003) using 
∆=0.1 and 14.2 (0.0002), 6.4 (0.0009) and 5.5 (0.0006) using ∆=0.9 for 
DBP. Heritability were predicted as 0.299, 0.139 and 0.246 using ∆=1.0, 
∆=0.1 and ∆=0.9 .The random walk gave better results compared with 
autoregressive structures (DBP was simulated with 0.317). We hypothesis 
that: increasing the time points should decrease the genomic inflation 
factors [7] due to accumulation of information regarding both relatedness 
and substructure over time. We employed both genomic and pedigree 
based relationship matrix in the mixed model (3). Genomic relationship 
matrix found to give lower genomic inflation factor as 1.40, 1.33, and 1.63 
compared with pedigree based relationship matrix 1.57, 1.83, and 1.59 over 
three time points for DBP. Due to small number of time points (t=3) still we 
obtained high level of genomic inflation factors ( λ > 1  ). Table 1 and Table 
2 shows that both genomic relationship and pedigree relationship matrix 
detected mostly different set of SNPs for different time points.

However both small sampling size and small number of time points 
may lead to false positives and false negatives. This may be true especially 
for very first time point: genomic relationship matrix detected 154 SNPs 
at 5 % False Discovery Rate (FDR) (134 and 56 SNPs detected for time 
points 2 and 3 respectively at 5 % FDR) and pedigree relationship matrix 
detected 216 SNPs at 5 % FDR (300 and 96 SNPs detected for time points 
2 and 3 respectively at 5 % FDR). Due to smaller genomic inflation factors 

we investigated results of genomic relationship matrix for causal SNPs. 
rs11711953 from time point 1, 2 and 3 is found to be associated with 
MAP4 gene. 

We used GRAMMAR approach to analyze each time points (and 
average of them) cross sectionally (Table 3). However we did not detect 
any genomic signals after multiple hypothesis corrections. Although there 
was signals from time point 2 by rs1948722 at the vicinity of ARHGEF3 
(p<0.00012), the SNP became non significant after multiple hypothesis 
correction by FDR. Magnitude of GRAMMAR p values (Table 3) found to 
be larger compared with the p values of random walk models (Tables 1,2). 
This clearly shows that longitudinal gene and environmental effects over 
time needs to be taken into account by proper methodology. Otherwise 
since the genomic signals will be contaminated by stochastic errors this 
may lead to either undetection of the signals or may also lead to false 
positives. Random walk is a non stationary process and in this paper we 
extended the model for stationary case by tuning ∆ parameter. However 
theoretical and empirical dynamic association studies are needed if non 
stationary assumption is useful or not for dynamics of gene and permanent 
environmental effects.

Conclusions
Genomic relationship matrix gave better inflation factors and estimates 

of heritability compared with pedigree information. The random walk 
model may be useful for long time series in practice due to its recursive 
structure from Kalman filter. When the longitudinal observations available 
(daily or monthly for example) the model could predict the on-line 
genomic signals sequentially due to the Kalman Filter. In genomic studies 
failing to taken into account of longitudinal gene and environmental 
effects over time may lead to either undetection of true signals and/ or 
may also lead to false positives due to stochastic errors.
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Top SNPs for Time Point 1 Top SNPs for Time Point 2 Top SNPs for Time Point 3
rs6763824 2.28E-09 rs11711953 3.72E-07 rs7619263 8.41E-08
rs11716779 5.18E-09 rs11706549 3.82E-07 rs6794386 8.58E-08
rs1665982 6.11E-09 rs17468698 5.45E-07 rs6444444 3.65E-07
rs11711953 6.11E-09 rs7631950 1.04E-06 rs11711953 3.74E-07
rs11706549 7.06E-09 rs2133601 1.15E-06 rs11706549 3.97E-07
rs34448818 7.53E-09 rs13063042 1.21E-06 rs7621594 1.13E-06
rs13072132 7.64E-09 rs11130143 1.22E-06 rs902119 1.82E-06
rs17785248 8.38E-09 rs11130146 1.22E-06 rs35836 1.88E-06
rs319680 2.19E-08 rs11716582 1.22E-06 rs9861506 2.42E-06
rs7621236 1.96E-07 rs1403579 1.22E-06 rs902118 2.79E-06

Table 1: Top 10 SNPs and correspondent raw p values obtained using random walk model from genomic relationship matrix for first replicate of DBP

Top SNPs for Time Point 1 Top SNPs for Time Point 2 Top SNPs for Time Point 3
rs17468698 5.90E-09 rs2001665 2.36E-08 rs1917098 5.24E-07
rs6763824 3.41E-07 rs11711953 2.56E-08 rs1320260 1.33E-06
rs1515592 6.44E-07 rs11706549 2.81E-08 rs7616403 1.79E-06
rs6774170 1.39E-06 rs861375 3.93E-08 rs3924267 2.40E-06
rs7621236 1.49E-06 rs836852 4.08E-08 rs1818553 2.78E-06
rs4858842 1.53E-06 rs2589601 9.44E-08 rs7651173 3.13E-06
rs12635772 1.63E-06 rs13067751 5.30E-07 rs4974272 3.21E-06
rs7429162 1.77E-06 rs2371997 7.81E-07 rs7632426 3.39E-06
rs11716779 1.96E-06 rs9858561 1.43E-06 rs9814548 3.59E-06
rs7624474 1.96E-06 rs13323469 2.19E-06 rs11710809 3.59E-06

Table 2: Top 10 SNPs and correspondent raw p values obtained using random walk model from pedigree relationship matrix for first replicate of DBP
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Top SNPs for Time Point 1 Top SNPs for Time Point 2 Top SNPs for Time Point 3
rs7634891 7.21E-05 rs11919819 3.78E-05 rs17295091 1.16E-05
rs3821750 0.000439 rs1515441 4.76E-05 rs7634891 2.59E-05
rs4681625 0.000526 rs6778909 7.90E-05 rs765006 6.08E-05
rs6771925 0.000831 rs7653527 8.59E-05 rs4858283 8.32E-05
rs4685707 0.000832 rs1949587 0.000107 rs12632218 0.000222
rs13323544 0.000969 rs1948722 0.000123 rs2196550 0.000301
rs4234379 0.000981 rs1515442 0.000195 rs9877517 0.000309
rs1012583 0.000991 rs6775757 0.000205 rs1386948 0.000311
rs13322784 0.001168 rs9880343 0.000214 rs1389660 0.000349
rs9813330 0.001757 rs17066303 0.000309 rs6764110 0.000352

Table 3: Top 10 SNPs and correspondent raw p values obtained using GRAMMAR for first replicate of DBP
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