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Abstract
Many current fishery stock assessment methods strongly rely on the amount of fish harvest reported at the dock by fishermen. We seek 

a method for fish stock assessment that is based on transcriptome measures. In this study we were interested in the correlation between 
transcriptome level diversity and changes in the phenotype expression ability of commercially targeted fish. By analyzing the complexity of 
miRNA/RNAi 7mer binding sites in the 3’UTR regions, inferences are made as to the accessible repertoire of phenotypes for the organism. If 
fewer phenotypes are available, for use in response to environmental change, or for use in extending habitable niche, such as by ‘schooling’, 
then significant loss of fishery stock may result. Preliminary results indicate Gadus Morhua (Atlantic Cod) has undergone such a loss in transcript 
regulatory complexity, which appears to be associated with the collapse of the Cod fishery in the Gulf of Maine.
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Introduction
Studies of individual regulatory elements in a variety of species [1-

3] have demonstrated the prevalence of functional motif conservation 
without sequence conservation. This would indicate that the sequence 
meta statistics, such as on distributions of anomalous regulatory motif 
counts, might remain the same, while the individual sub-sequences with 
anomalously high counts, for example, might be significantly changed 
from one species to the next. Where strong sequence conservation does 
hold, there is often associated some constraint on the encoding that 
prevents neutral drift to another motif sequence (such as with the overlap 
encoding regions described in [4]).

Cleavage stimulatory factor (CstF), is a 200 kDA heterotrimeric protein 
which assembles onto the 3’ end of a pre-mRNA (probably as a dimer). CstF 
binding promotes the polyadenylation process. Once polyadenylated, the 
mature mRNA is ready for export outside the nucleus. Not surprisingly, 
the amount of CstF depends on cell cycle [5]. CstF is also known to play 
an active role in response to DNA damage [6], where it has been found 
that cells with lower levels of CstF have less viability for survival following 
UV exposure. CstF is seen to play a critical role in tumor cells as well. 
Many tumors have been found to have a mutated p53 gene (the most 
commonly mutated gene in human tumors). Recent studies of p53 show 
that it inhibits mRNA 3’ processing via interaction with CstF [7]. P53 is 
also known to transactivate miRNAs, allowing large changes in expression 
for miRNA targeted genes in later post-translational processing [7]. P53 
and CstF together are at the nexus of a critical regulatory control via 3’ 
processing. Not surprisingly, as we will show, the motif ‘footprints’ of 
the CstF binding site are one of the most statistically strong motifs (high 
count anomalous) in the 3’ region of mRNAs. The prevalence of the CstF 
motif seen in the ‘healthy’ species is found to be reduced and less varied 
in damaged fish stocks (as will be shown), and is associated with reduced, 
less targeted, CstF binding.

Transcriptome-wide comparisons have been done via SNP profiling, 
where identification and use of SNP markers permit a fine-scale 
stock identification and tracking, and could eventually allow a deeper 
understanding of ecotype divergence [8]. In a study of pacific herring [9] 
almost 11,000 potential SNPs were identified, of which 96 were directly 
tested. Of those 96, six were found to provide excellent sub-population 
biomarkers. SNP discovery is more scalable than SNP validation. SNP 
validation is inherently more difficult than motif validation in that the 
single nucleotide has no additional implicit information than the ‘one bit’ 
of information typically encoded in a two-state SNP. A motif that is 10 
bases long, on the other hand, has 4 ^ 10=2 ^ 20~=10 ^ 6 possibilities, 
of which some can occur with anomalously high counts, allowing for six 
orders of magnitude greater internal or ‘implicit’ information content. 
This allows a preliminary validation process to be done much more in the 
computational (scalable) realm, if not entirely computational if referring 
to a meta-level statistical analysis as we will be being done here. 

We describe an investigation into transcriptome diversity, and 
associated phenotype expression ability, of commercially targeted fish. 
This is done by analyzing the complexity of miRNA/RNAi 7mer-based 
regulatory motif footprints in the 3’ untranslated region (3’UTR) of 
protein coding transcripts. There appears to be a ‘normal’ 7mer count 
distribution profile. The hypothesis is that a reduction (or significant 
deviation from normal) in these motif footprints correlates with loss of 
transcriptome diversity and a less abundant stock. 

The transcriptome/EST data analysis is done using on ORF-finder 
program written in Perl [4]. EST 3’UTRs are identified, wherein 
anomalously recurring 7-base sequences, known as “7mers,” are sought. By 
analyzing the distribution on 7mers, a crude assessment of transcriptome 
regulatory diversity is inferred, with possible implications for fish stock 
assessments.

In this paper we perform transcriptome-wide studies, where we do 
transcript fingerprinting not via a SNP profile on each transcript [10], but 
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Entropy measures, statistical linkage, and mutual information: 
Codon & ORF discovery

The degree of randomness in a discrete probability distribution P is 
measured in terms of Shannon entropy [12]: 

S(P) = Σk pk log(pk)

where P has outcome probabilities {pk}.

When comparing discrete probability distributions P and Q, both 
referring to the same N outcomes, the proper measure of their difference 
is measured in terms of their (possibly symmetrized) relative entropy [12] 
(a.k.a. Kullback-Leibler Divergence): 

D(P||Q) = Σk pk log(pk/qk)

where P and Q have outcome probabilities {pk} and {qk}.

In evaluating if there is a statistical linkage between two events X and Y 
we are essentially asking if the probability of those events are independent, 
e.g., does P(X,Y)=P(X)P(Y)? Since this reduces to measuring the difference 
between two probability distributions: P(X,Y) and Q(X,Y)=P(X)P(Y), the 
relative entropy between P and Q is sought, where D(P(X,Y) || P(X)P(Y) )is 
the definition of ‘mutual information between {X,Y}: MI(X,Y)=D(P(X,Y) 
|| P(X)P(Y)).

Mutual information allows statistical linkages to be discovered that 
are not otherwise apparent. Consider the mutual information between 
nucleotides in genomic data when different gap sizes are considered 
between the nucleotides as shown in figure 1a. When the MI for different 
gap sizes is evaluated (Figure 1b), a highly anomalous long-range statistical 
linkage is seen, consistent with a three-element encoding scheme (the 
codon structure is thereby revealed)

Once codon groupings are revealed, a frequency analysis on codons can 
be done, and the ‘stop’ codons are found to be rare. Focusing on the stop 
codons it is easily found that the gaps between stop codons can be quite 
anomalous compared to the gaps between other codons. Open reading 
frames (ORFs) are regions that have no stop codon {(uaa),(uag),(uga)} 
when traversing with a particular codon framing. The restriction to larger 
ORFs is due to their highly anomalous occurrences and likely biological 
encoding origin, e.g., the long ORFs give a strong indication of containing 
the coding region of a gene. By restricting to transcripts with ORFs ≥ 
300 in length, we have a resulting pool of transcripts that are mostly true 
coding transcripts.

Once the anomalous ORF structure is identified, nearby associated 
encoding anomalies are discovered (which in turn serve as validators), 
such as transcription start site recognition, in case of genomic sequence, 
or start/end of coding region recognition, in case of genomic or 
transcriptomic sequence information. The cis- and trans-regulatory 
regions are shown in figure 2, with cis-regulation via protein transcription 
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Figure 1: Codon structure is revealed in the V. cholera genome by mutual information [13] between nucleotides in the genomic sequence when 
evaluated for different gap sizes.

via a miRNA binding site (7mer) profile on each transcript’s 3’UTR region. 
By doing a meta statistics analysis on the anomalous motif occurrences 
we will show evidence of significant trans-regulatory damage in Atlantic 
Cod (G. morhua) which is known to be in an overfished status where 
overfishing is still occurring [11].

Background
In Current fish stock assessment methods Section, a description is 

given of the current fish stock assessment methods. In Entropy measures, 
statistical linkage, and mutual information: Codon & ORF discovery 
Section, bioinformatics methods are used to quickly rediscover ORF 
structure from raw genomic data (to prove their utility) then the methods 
are used to identify the anomalously high-count sub-sequences found 
before and after the protein coding regions (the cis-regulatory and trans-
regulatory motifs (where cis motifs are ‘upstream’ of coding, i.e., they are 
the sequence region to the left of the coding sequence region, while trans 
is to the right of the coding region).

Current fish stock assessment methods
Fisheries stock assessment refers to the analysis of the past and 

current status of a group of fish that live in the same geographic area, 
in order to learn more about the effects of fishing and other factors. The 
information obtained from stock assessments helps fisheries managers 
make sustainable decisions. 

Stock assessments are done using models which rely on three different 
types of data: catch, abundance and biology. Catch data is simply the 
amount of fish taken from a stock of fish by fishing. There are many ways 
fisheries managers can obtain this data, including dockside monitoring, 
logbooks from commercial fishermen, observers that go to sea with 
commercial fishermen, and sampling the catch of recreational anglers. 
Abundance data is a measure or representation of the amount of fish that 
are actually in the stock. This type of information usually is generated by a 
statistical model which analyzes sampling data from fishery-independent 
surveys. These surveys take place on research vessels or contracted fishing 
vessels and use standardized sampling methods. Biology data adds the 
aspect of individual fish growth and mortality into the model. Some 
aspects of biological data that are incorporated can include growth rates, 
reproductive rates and movement.

The models which are used to conduct stock assessment differ among 
different commercial fisheries, and are limited by the amount and type 
of data available to use. Many other factors are also often incorporated 
into these models. A species’ position in its larger food web, competition 
between other species, habitat and physical environmental conditions are 
all other aspects that can be taken into account. While some fisheries are 
very well maintained, others may need some work to better the way in 
which they are maintained.
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factors dominating for DNA  mRNA regulation, and miRNA template 
strand recognition (via RNAi) regulation dominating mRNA  protein 
processing.

A transcriptome-wide study is done on numerous species of fish 
(details to follow in Methods and Results). For a given species, the length 
distribution on their 3’UTR regions is examined, with specific plots shown 
for three species of fish in the Methods, where the selection of >300 ORF 
and >200 3’UTR is made in the initial data handling (as summarized in 
table 1 in the Methods to follow).

Computational Methods
The analysis in this paper focuses on data presented at the transcriptome 

level, particularly that from EST processing. This allows analysis to be 
done at the earliest opportunity since EST generation is an essential first 
step in genome construction, SNP discovery, and microarray design. 
Assuming the collection of transcripts has already been filtered such that 
each transcript has at least one ORF length greater than or equal to 300 
nucleotides, we now filter further according to retaining those transcripts 
with 3’UTR regions 200 nucleotides in length or greater (Figure 3), with 
results as shown in table 1.

Referring to Salmon from table 1 as an example: there are 498,523 
EST transcripts from Genbank that are validated via a high-confidence 
BLAST score alignment to a Genbank-annotated protein coding mRNA. 
These EST transcripts are scanned with six ORF-finder passes: three ORF 
passes in the forward direction, for the three positive strand ORF frame-
passes, and three ORF frame-passes on the reverse-compliment strand 
for the negative DNA strand genes. (There are three frame passes because 
the codon encoding element is three bases long, such that a tiling over 
the sequence with codons is possible with three different codon ‘frame’ 
conventions). We restrict to transcripts for which at least one ORF ≥ 300 
bases in length is found according to any of the six aforementioned frame-
passes. Of the ORF ≥ 300 sequence, we restrict further to those having 
3’UTR regions greater than 200 bases.

The cutoff of ≥ 200 3’UTR length is justified on a similar basis to the 
ORF cut-off that is typically used (mentioned earlier). As with the ORF 
length distribution, the 3’UTR distributions reveal a clear deviation 
from geometric fall-off on length (as might be expected from a random 
process), and if sufficiently far into the heavy tail region (with non-zero 
counts), where the geometric distribution fit would indicate a zero count, 
then all such instances have a high likelihood of pertaining to a biological 
encoding. The 3’UTR length histograms for three species of fish are shown 
in figure 4.

In each instance in figure 4, a fit to a geometric distribution can be 
based on the short 3’UTR lengths (just as with short ORF lengths) to 
estimate the random approximately geometric distribution, from which 
the deviation of the actual length distribution is can be estimated. For the 
species shown in figure 4 and also listed in table 1, the deviation is notable 

for lengths ≥ 200, thus the choice of cut-off. What is perhaps even more 
notable is that species-wide uniformity in the maximal 3’UTR lengths. 
Notice in figure 4 that there are no 3’UTR regions greater than 600 bases, 
with very few greater than 400 bases. The same is also found to hold for 
the other fish in table 1, and for human, moue and a number of other 
organisms (not shown). A heavy tail 3’UTR distribution with strict fall-off 
to zero at 600 length or longer serves as a further validation on acquisition 
as well, since it appears to be a universal. 

Results
In the Methods we describe how Genbank mRNA/EST data is 

downloaded, filtered, and rudimentary validation is done. In this process 
all of the fish 3’UTR regions shared similar meta-statistical features 
as already mentioned. In what table 2 is shown further transcriptome-
wide processing for the fish species described in table 1. The first column 
describes the transcripts obtained after the aforementioned ORF ≥ 300 and 
3’UTR ≥ 200 filters, plus the added filter of requiring that the first 35 bases 
in a 3’UTR region be unique (otherwise take the longer transcript and 
discard the other). The transcripts meeting the various filters indicated are 
then passed through a prokaryotic gene-finding program that does three 
ORF passes in the forward direction then three ORF passes on the reverse 
complement read of the sequence. The six ORF passes filter according to 

Figure 2: Classic (monocistronic) central dogma: DNA mRNA  
Protein

Figure 3: Transcript selection: ≥ 300 length ORF region and ≥ 200length 
3’UTR region.
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Figure 4: 3’UTR Length Distribution Profiling/Validation. Length 
distribution on 3’ UTR regions for tuna, salmon, cod (from A-C).

Species GenbankESTs uniq_ORF ≥ 300 3UTR ≥ 200
Tuna 10,163 5,366 1,739
Salmon 498,523 232,014 96,084
Cod 257,255 117,443 41,673
Catfish 139,475 60,094 24,558
Pufferfish 26,069 11,274 2,599
Cyprinus 47,738 26,579 10,166
Dicentrarchus 55,837 25,929 9,904
Disso 37,104 17,371 4,803
Hippoglossus 20,836 15,066 5,659
Osmerus 36,788 28,693 16,040
Sparus 29,216 38,034 8,710
Zebrafish 1,488,339* 121,554 44,253
Astyanax 189,864 118,036 43,094

Table 1: Preprocessing of mRNA/ESTs  unique strands with ORFs ≥ 300 
 also with 3UTRs ≥ 200.

*first 20% of genbank sequences for zebrafish.
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the ORF ≥ 300, 3’UTR ≥ 200 and ‘35uniq’, and their overlap topology is 
noted as done in previous work [13]. If a transcript has both forward and 
reverse encoding, each of which meets the strict filtering criteria (ORF 
≥ 300, etc.) then the transcript is referred to as ‘dual;’ in table 2. The 
extent of dual encoding revealed at this stage of the transcriptome-wide 
validation process was a surprising result and is described further in the 
study by Winters-Hilt S (2017) [4], so won’t be discussed further here, 
other than to point out a universal amount of ‘duality’ appears to occur 
in the 7%-15% range (and this is seen to hold for human and mouse and 
other transcriptomes as well). The amount of same read direction overlap 
encoding is also significant, and also typically falls in a range (between 
11% and 18%) that can serve to validate acquisition.

Perhaps the most concerning 3’UTR acquisition validation statistic in 
table 2 is the percentage of ORFs recognized as being part of an operon. 
As mentioned in the methods, there is no direct handling on operon 
structure (if present) with the simple algorithm used. Rather, operon 
handling is done via the iterative bootstrap process mentioned earlier. In 
the fish analysis a crude operon recognition was done for any transcript 
that had multiple ORFs non-overlapping, where those ORFs would all be 
considered part of a single operon, for which a single 3’UTR region is 
indicated (to the right of the rightmost ORF in the operon). An operon 
is a cluster of coding regions under common cis-regulation, where the 
ORFs enclosing those coding regions may overlap to a small extent, such 
that the operon construction algorithm based on sets of disjoint ORFs 
(with results shown in table 3) only captures part of the operon structure 
(providing an estimate). In practice, tuning on allowed overlap amounts 
reveals an upper bound on percentage of operon structure that is roughly 
twice that shown in table 2, for most species, but less than 3% for all. Since 
the upper bound on operon structure is 3% of the filtered data obtained 
thus far, this means that we have at most a 3% source of count errors in 
the 3’UTR 7mer motif analysis. This level of error can be tolerated with 
the motif-type signal analysis that follows, given the cutoffs that are 
employed, so further efforts to deal with the operons will be left to when 
it is necessary.

At this point we have a set of transcriptome-wide 3’UTR extracts for 
several species of fish that is highly vetted. Let’s now examine these sets 
of 3’UTR regions for their 7mer count statistics at a meta-statistical level 
(Table 3), without reference to specific sequence information, and then at 
a direct statistical level as relates to particular signaling motifs that have 
been identified. In table 3 it is shown that the transcriptome-wide 3’UTR 
7mer count statistics, including the mean count and standard deviation on 
counts, etc., for each species.

If σ/µ<1.0 we have more of a Gaussian structure emerging for k-mer 
count distributions, with easily identifiable “heavy-tail” statistical 
anomalies, while σ/µ>1.0 indicates a more uniform distribution. The 
σ/µ>1.0 of the Cod 7mer distribution is partly an artifact of the high 
poly-A 7mer counts distorting the count statistics, however, as other 
species transcriptome data with σ/µ>1.0 also had high #7A/u. So σ/µ>1.0 
is not a distinguishing characteristic. If we look further at the types of 
motifs, however, we find that the high-count 7mers typically fall into two 
categories: 4 or more bases the same, or no more than 3 bases the same 
(“no4”). If we consider the percentage of high-count anomalous 7mer 
with no more than 3 bases of the same type we see that Atlantic Cod is 
singled out. If we look further, into the list of high-count sequences we see 
that there is a group of 4-or-mor-bases-the-same motifs missing as well, 
many of them variants of the CstF motif. Thus Atlantic Cod has a notably 
reduced TF binding site strength for CstF and is lacking a large number 
of “no4” 7mer miRNA targets. This is discussed further in the Discussion, 
but the main result is seen here in the statistics. In these results we are 
seeking a trans-regulation diversity biomarker (that is meta-statistics 
based) and the no4 statistic appears to suffice in this role by singling out 
atlantic cod where fishery collapse has occurred from numerous other 
species not suffering from such as drastic niche failure.

To recap, first recall the typical eukaryotic 3’UTR signaling (starting 
with the stop codon at the left):

---|TAA-------(T-rich)-----(*)-----AATAAA-----(poly-A site)----(T/
GT rich)----

Species
# of Genbank mRNA/EST 

sequences with ORF ≥ 300, 
3UTR ≥ 00, & uniq35start

% column 1 mRNA/
EST sequences that 

are dual

% ORFs from column 1 
sequences that are in (loosely 

filtered) operons

% ORFs from column 1 
overlapping with same read 

direction:
Bluefin Tuna
Thunnus thynnus 1541 9.5 0.63 11.8

Atlantic Salmon
Salmo Salar 82007 8.0 0.86 13.5

Atlantic Cod
Gadus Morhua 34069 10.1 1.17 17.0

Blue Catfish
Ictalurus Furcatus 20727 8.7 2.06 13.7

Japanese Pufferfish
Takifugu Rubripes 2313 6.5 0.19 12.2

Carp Cyprinus Carpio 8275 12.4 1.50 14.6
European Bass
Dicentrarchus Labrax 8372 9.8 0.97 13.1

Antarctic Toothfish
Dissostichus mawsoni 4151 7.1 0.40 14.2

Atlantic Halibut
H. Hippoglossus 4579 10.9 0.51 14.7

Rainbow Smelt
Osmerus Mordax 12409 14.3 2.03 17.9

Gilt-head Bream
Sparus Aurata 13830 9.8 1.15 12.7

Zebrafish
Danio Rerio 37844 7.4 0.62 13.9

Blind Cave Fish
Astyanax Mexicanus 37,695 7.2 0.23 12.8

Table 2: 3’UTR Sample Selection and associated ORF topology. The number of ESTs used in the transcriptome analysis and their ORF topology.
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So, we expect to see in the list of most frequent 7mers in the 3’UTR:

(1)	7mers that are T-rich: ttttttt, ttatttt, tttattt, etc.

(2)	7mers that are A-rich and poly-A with very high counts,

(3)	7mers that have ‘AATAAA’

(4)	7mers that are GT-rich for alt-polyA via (*)=(GT rich) signal

All of which is seen. (Note how all of the 3’UTR signaling related to 
mRNA production processing have multi-target repeat type signals.)

Atlantic Cod, however, is found to have significantly less ‘diffuse GT’ 
motif than other species of fish (not shown), the motif involved in CstF 
recruitment and related poly-A cleavage site selection: e.g., g(tg)(tg)(tg) 
motifs are seen in cod, but not c(tg)c(tg) or c(tg)tc(tg). Damaged CstF 
activity is associated with disease and enhanced (detrimental) sensitivity 
to environmental stimulus – yeast cells with reduced levels of CstF display 
an enhanced sensitivity to UV treatment, for example.

Discussion
We expect to see 7mers with high frequencies when they associate 

with miRNA binding sites. It is known that many miRNA 7mer binding 
sites are controlled with high-specificity (i.e., the 7mer-target has no 
repeating elements that would allow multiple targeting miRNAs), while 
other miRNA targeting is meant for multiple binding sites (with 7mer 
binding sites with repeats). We can ‘lock’ onto the high-specificity miRNA 
signaling by focusing on 7mers with low motif-pattern repetition – this is 
accomplished by focusing on 7mers that have no more than three bases 
of the same type (the ‘no4’ 7mers).The notably less informed (Shannon 
entropy greater) 7mer count distribution for Cod is hypothesized to relate 
to a reduced complexity in 7mer-based miRNA/RNAi regulatory capabilities. 

If Cod has less trans-regulatory capabilities, resulting in a less 
diverse selection of phenotypes needed in order to robustly respond 
to environmental change, then it will become endangered as a species 

from much more minor environmental changes, as appears to be the 
case since the collapse of the Cod fisheries in the Northeast. The loss of 
trans-regulatory diversity may provide a new indicator of overfishing and 
environmental strain (due to shift in feeding areas further from spawning 
areas for example), and may provide an early transcriptome-based 
indicator of fishing stock damage for commercial fisheries.

Conclusions
Atlantic Cod appears to have significantly less ‘diffuse GT’ motif in 

its 3’UTR transcripts, indicative of compromised CstF recruitment. 
Damaged CstF activity is associated with disease and enhanced 
(detrimental) sensitivity to environmental stimulus – enhanced sensitivity 
to UV for example. Atlantic Cod also appears to have significantly less 
trans-regulatory high-specificity (‘no4’) miRNA complexity than other 
fish. Less trans-regulatory complexity will lead to less diverse mRNA 
trans-regulation control of phenotypes, leading to less robust response 
to environmental change. These results identify a meta-statistical 
transcriptome-based stock assessment biomarker for potential or 
occurring ecotype collapse. The biomarker correctly identifies Atlantic 
Cod as a species at risk from a set including twelve other fish species not 
thought to be at risk.

Acknowledgements
The authors would like to thank Connecticut College and QLS for 

research support.

References
1.	 Ludwig MZ, Bergman C, Patel NH, Kreitman M (2000) Evidence for 

stabilizing selection in a eukaryotic enhancer element.  Nature 403: 
564-567.

2.	 Fisher S, Grice EA, Vinton RM, Bessling SL, McCallion AS (2006) 
Conservation of RET regulatory function from human to zebrafish 
without sequence similarity. Science 312: 276-279.

Species /7mer_counts µ(mean) σ (std.dev) σ/µ #> µ + 3σ #> µ +1σ % ‘> µ + 1σ’ 
with no4

7A-mer 
counts #7A/µ

Bluefin Tuna
Thunnusthynnus 30.6 22.87 0.745 177 2005 42.3 920 30

Atlantic Salmon
SalmoSalar 1820 1280 0.703 172 2211 45.7 28940 16

Atlantic Cod
GadusMorhua 794 919 1.157 70 767 15.0 88430 111

Blue Catfish
IctalurusFurcatus 478 442 0.925 107 1348 32.3 30647 64

Japanese Pufferfish
TakifuguRubripes 43 38 0.883 247 1673 55.9 1796 42

Carp
CyprinusCarpio 202 170 0.842 114 1684 40.6 12078 60

European Bass
DicentrarchusLabrax 190 152 0.800 143 2047 44.9 6152 32

Antarctic Toothfish
Dissostichusmawsoni 86.5 87.7 1.014 118 1497 38.3 6830 79

Atlantic Halibut
H. Hippoglossus 104.1 72.8 0.699 233 2320 58.6 913 9

Rainbow Smelt
OsmerusMordax 348.6 234.0 0.671 191 2238 47.1 3554 10

Gilt-head Bream
SparusAurata 329.6 308.3 0.935 107 1628 42.1 22283 68

Zebrafish
Danio Rerio 816 1249 1.531 61 652 28.4 133791 164

Blind Cave Fish
AstyanaxMexicanus 753.0 680.5 0.904 185 1778 44.3 26716 35

Table 3: 7mer count statistics. Noisy ESTs show as significant over-counting in ‘aaaaaaa’ 7mers, which, via #polyA/mu, is used as a gauge of the noise 
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