胃疾病及其治疗德赢娱乐国际

全文

病例报告
嗜酸性食管炎是糖敏感疾病吗?

吊杆朗斯代尔*

美国俄亥俄克利夫兰克利夫兰诊所基金会名誉会员

*通讯作者:德里克·朗斯代尔,美国俄亥俄州克利夫兰诊所基金会名誉退休研究员,E-mail: derricklonsdale@hotmail.com


摘要

嗜酸性食管炎是一种炎症病症,导致吞咽困难,食物障碍和胸痛。诊断需要通过食管活检每次高功率场中最少15个嗜酸性粒细胞。过去二十年来,它已成为胃肠道发病率越来越重要的原因。一个14岁的男孩在8岁时被诊断为嗜酸性食管炎。直到内窥镜检查都有很多年,他的病史已经被认为是心理族。唯一的其他正实验室研究是嗜酸性粒细胞症。尽管常规治疗,但没有一种改善整体症状,食管炎持续存在,并且他未能增加体重和身材。体格检查揭示了许多自主功能障碍和红细胞转铁糖蛋白酶试验表明硫胺素稳态异常。静脉注射水溶性维生素的静脉注射(THCL)开始治疗。因为转铁糖酶试验变得更差,所以用硫胺素四氢呋喃二硫化物(TTFD)代替,随后改善了转酮酶和对症反应。 There was a family history of alcoholism and the patient was addicted to sugar, suggesting a genetic risk to explain the abnormal thiamine homeostasis. Beriberi causes dysautonomia in its early stages. Inflammation is now known to be suppressed reflexly through the vagus nerve, itself dependent on acetylcholine. Abnormal motility of the esophagus has been reported in eosinophilic esophagitis. Failure of THCL to improve transketolase activity suggested a genetic failure in a thiamine transporter and its consequent correction with TTFD that does not require the thiamine transport system.

关键字

嗜酸性;食管炎;炎症;硫胺素稳态

介绍

嗜酸性食管炎(EoE)是迄今为止最常见的嗜酸性胃肠道疾病。它是一种定义明确的慢性特应性疾病,由辅助性T细胞2型(Th2)炎症引起,通常由食物过敏原触发。它通常对治疗反应很差,并且没有普遍接受的长期治疗[1]。它代表了食物过敏的最新形式,通过避免不良食物来控制它已越来越多地成为实现和维持缓解的治疗替代方案[2]。在一个拥有70多万居民的小镇上,一项研究表明,10年内,EOE迅速增加[3]。据报道,EoE具有介体复合物亚单位12(MED12)突变[4]。在793例EoE患者中,72%为男性[5]。173例食管食物团塞患者中,27%为EoE[6]。食管的脊髓和迷走神经传入似乎都有助于疼痛感觉[7],其生理学对其运动性很重要[8]。食管的神经功能依赖于乙酰胆碱,食管运动障碍已在EoE中得到证实[9]。

病例报告

一个14岁的男孩在8岁时被诊断为嗜酸性食管炎。他的病史始于婴儿期,复发性耳部感染和哮喘。他的许多症状(表1),最初被认为是心身的,混淆了诊断,直到内镜检查。除了嗜酸性粒细胞增多和食管病理持续性外,许多实验室研究一直是阴性的。常规治疗对症状没有影响。他的体重和身材都没有增加。体格检查发现腹部轻触有严重的痛觉过敏。心脏听诊提示二尖瓣脱垂。髌骨深肌腱反射无反应,即使在詹德拉纪操作。轻拍大腿内侧和腿部导致一个非常缓慢的外观短暂的白色皮肤描记。 Laboratory studies are shown in (Table 2). He was treated first with a course of intravenous infusions of watersoluble vitamins that included thiamine hydrochloride (THCl) (Table 3). Because of increasing abnormality of erythrocyte transketolase, thiamine tetrahydrofurfuryl disulfide (TTFD) was substituted for THCL with consequent improvement in transketolase and symptomology. Body weight at the beginning of treatment was 105 pounds, placing him in the 25th百分位。经过一年的治疗,他的体重增加到122磅,使他进入了50人的行列th百分位数。在同一时期,他的身高从64.5英寸上升到68.5英寸,从50英寸上升到68.5英寸th75年th百分位。

这个男孩在写这篇文章的时候18岁。腹痛是可变的,并与可见的腹部肌肉收缩有关。头痛、恶心、关节疼痛和疲劳似乎与食物摄入有关。夜间腹痛,需要排尿。

讨论
硫胺素体内平衡

硫胺缺乏(TD)可导致能量代谢受损和大脑易损性[10]。直到最近,有关硫胺摄取、激活和活性辅因子与靶酶结合的遗传缺陷才被描述。SLC19A3硫胺素转运体的遗传变异可能对酒精依赖综合征[12]的遗传易感有一定的贡献,可能在该患者的家族史中具有重要意义。TD引起脑线粒体[13]氧化应激。在一名萎缩性脚气患者中,硫胺转运体[14]的SLC家族中有37个突变。大鼠TD降低了含有功能性内皮[15]的主动脉中乙酰胆碱介导的舒张和苯肾上腺素介导的血管收缩。TD诱导hif1介导的基因表达与缺氧胁迫[16]中观察到的类似。在小鼠中删除该因子可导致痛觉过敏加剧,提示其在疼痛调节[17]中的二重性,并可能与患者表达的痛觉过敏/异位痛觉有关。危重患者的败血症可能与TD有关,实验性TD导致小鼠[18]氧化应激和炎症反应改变。人体组织中总硫胺素含量低于其他动物。 The high sensitivity of humans to thiamine deficiency may be linked to this [19].

表1:14岁男童嗜酸性食管炎的症状

表2:一名男孩的嗜酸性食管炎化验结果

表3:静脉滴注水溶性维生素给一个患有嗜酸性食管炎的男孩

梅奥诊所指出,测定硫胺素缺乏的最好方法是测定血液中硫胺素的含量。就像镁一样,这可能会误导人,因为重要的是它的细胞内含量。在加入硫胺素焦磷酸(TPPE)之前和之后,测定硫胺素依赖酶的功能和红细胞转酮醇酶活性明显表明硫胺素缺乏。在给予硫胺[20]后,TKA在正常范围内随着TPPE的减少而增加。

空热量

彼得斯是第一个认识到硫胺素和葡萄糖之间的关系的人。硫胺素缺乏鸽子的神经系统的病理与Beriberi和Peters在TD鸽子细胞与硫胺素的呼吸相比之下相似。没有发生差异,直到在葡萄糖中加入到制剂中,当它变得很明显,二氧化碳的生产在硫胺素足够的细胞中立即开始,而它不在Td细胞中。Peters称为该试剂素效应[21],从而强调摄取过量的简单碳水化合物,称为高卡路里育营养不良,自动增加对维生素的需要[22]。硫胺素焦磷酸盐是过氧化物组中的2-羟基乙基COA裂解酶(HACL1)的辅助壳,使α氧化依赖于硫胺素用于脂肪代谢,[23-25]。

炎症

起源于迷走神经的动作电位调节T细胞,T细胞反过来产生乙酰胆碱,这是控制先天免疫反应所必需的。胆碱能神经元需要丙酮酸脱氢酶衍生的乙酰辅酶a来合成对食管[7]功能至关重要的乙酰胆碱[27]。推测TD导致该患者乙酰胆碱缺乏和迷走神经炎症抑制失败,并影响食管运动。

自主失调

自主神经异常不会产生独特的症状。这是一组症状,综合起来,表明存在一种自主神经异常状态。家族性自主神经异常(FD)于1949年被描述,但Riley和Moore后来继续注意到其他自主神经异常综合征[28,29]。鉴于大脑对葡萄糖的严重依赖,它能够通过神经内分泌轴来控制葡萄糖的代谢。因此,我们对疾病的理解应该扩展到在病理生理过程[30]的概念中考虑神经输入。该病人表现出许多临床现象,表明自主神经功能障碍。1979年[31]时,检查发现二尖瓣脱垂(MVP)的收缩期中期发出明确的声响,并伴有自主神经异常。94例患者被鉴定为MVP,其中59例红细胞[32]中红细胞镁浓度低。硫胺和镁作为硫胺依赖酶的辅助因子共同作用。吸入二氧化碳会引起一种情绪,类似于自发性恐慌发作[33],这是该患者病史中记录的症状之一。 Since hypoxia results in sympathetic overdrive in animal studies [34] and TD causes oxidative imbalance described as pseudo-hypoxia, it is hypothesized that panic attacks are fragmented fight-or-flight reflexes, initiated by TD in this patient. His history of ADD/OCD, that had caused some diagnostic confusion before the diagnosis of EoE showed some clinical improvement as a result of his vitamin treatment. Oxidative stress has been reported in ADD/ADHD) [35]. In his early history, this patient had recurrent otitis media, a frequent disorder attributed to oxidative stress [36]. He also had experienced recurrent asthma, a disease that occurred in the history of a child with intermittent cerebellar ataxia due to thiamin dependency [37]. Of 1,180 patients with EoE, 160 (14%) were suspected of having aeroallergen-associated triggers by history and 32 (20%) had biopsy confirmation of this. Most of them were boys (84%). All had a history or examination consistent with allergic rhinitis and 75% had a history of asthma [38]. Several pathogenic mechanisms related to the nervous system have been reported in non allergic rhinitis, including dysautonomia [39]. Riley noted that failure of general body growth in Familial Dysautonomia appears to be a regular feature despite normal growth hormone [29]. Perhaps the delay in growth would not have been noticed in this patient if he had not had a phenomenal growth acceleration of 4 inches in height and a weight increase of 17 pounds in one year of treatment. The higher percentiles for both showed that this was an unusual acceleration of growth. It is unknown whether the mechanism for growth failure in FD is directly related to the genetic cause of the disease or because of the resulting dysautonomia. Since the dysautonomia in this patient appears to have been acquired in relationship to thiamine metabolism, it suggests that growth failure was related to the dysautonomia.

硫胺素衍生物的作用

如果TD是该患者的主要生化损伤,其临床效应始于婴儿期,则需要解释红细胞转酮醇酶对盐酸硫胺的不良反应。其机制尚不清楚,但临床和实验室对硫胺四氢糠酰二硫化(TTFD)的反应表明,基因决定的硫胺转运体问题。TTFD是硫胺的一种开环形式,在细胞膜上非酶性还原。噻唑环闭合,一种完整形式的硫胺被引入细胞[40]。TD的早期症状是由自主神经异常引起的,常被诊断为心身疾病,在这个阶段很容易逆转。据推测,如果这些症状没有被识别出来,生化损害由于TD的纠正失败而继续,[41]可能会出现不可预测的并发症。遗传风险的作用正在扩大:例如,硫胺素焦磷酸缺乏或依赖可导致丙酮脱氢酶[41]、支链氨基酸[42]的脱氢酶或硫胺素焦磷酸激酶[43]的缺陷,尽管临床效果不同。所有这些由基因决定的病症都可以用药理学剂量的硫胺素治疗。因此,酚类疾病的典型表达远不如发现生化病变重要。由于这种类型的遗传缺陷,可能有许多人需要更多的硫胺,通常不是由饮食提供。 Thiamine precursor drugs can achieve these high blood levels and result in increased concentrations in the central nervous system [44,45]. An experiment in DBA/J2 mice suggested also that TTFD had a cholinergic effect [46]. An S-alkyl derivative of thiamine (benfotiamine) has had a beneficial effect on peripheral nerve function and inflammatory markers in type I diabetes [47] and significantly decreased pro-inflammatory mediators in liposaccharide-stimulated murine BV-2 microglia [48]. It has been shown, however, that this derivative is practically insoluble in water, organic solvents or oil, making it unsuitable for intravenous use. When solubilized in hydroxypropyl-beta-cyclodextrxin and given to mice, thiamine levels rapidly increased in blood and liver but there was no significant increase observed in the brain. These investigators proposed that benfotiamine only penetrates the cells after dephosphorylation by intestinal alkaline phosphatases, entering the bloodstream as S-benzoylthiamine that is converted to thiamine in erythrocytes and in the liver. This derivative should therefore be differentiated from true lipid-soluble thiamine disulfide derivatives and used appropriately [49]. It has been shown that TTFD inhibits the arachidonic acid cascade-line activation that would make it potentially more suitable for brain inflammation [50]. Thiamine pyrophosphate prevented cisplatin-associated oxidative stress, whereas thiamine did not prevent this [51]. TTFD rapidly increased thiamine activity in whole blood, erythrocytes, CSF and urine in normal and thiamine-deficient subjects. Such repletion was equal to that produced by parenteral, water-soluble thiamine hydrochloride or thiamine pyrophosphate [52], suggesting that this derivative might be useful in the correction of TD in the peroxisome where thiamine pyrophosphate is the cofactor required [23]. It is very unlikely that thiamine deficiency or abnormal homeostasis is the ultimate biochemical lesion in causing EoE. For example vitamin D deficiency has been associated with increased risk for severe asthma, challenge proven food allergy, severe atopic dermatitis and EoE [53]. It is hypothesized therefore that the biochemical lesion, whether it be genetically determined, nutritional in origin, or a combination of the two, represents the etiology for EoE that might be applicable to the etiology of other diseases.

结论

有证据表明,单例EoE患者的根本病因是硫胺代谢异常。有假说认为,由于柠檬酸循环功能低下导致的乙酰胆碱缺乏干扰了食道的运动,无法抑制食物过敏原引起的炎症反应。由于迷走神经供应肠,这可能解释嗜酸性肠炎和食管炎的发病率。通过测定红细胞转酮醇酶(TKA)的活性以及添加硫胺素焦磷酸盐(TPPE)对该酶的影响,可以区分TD相关EoE的发生率。

工具书类
  1. Cianferoni A, Spergel JM(2015)嗜酸性食管炎和胃肠炎。过敏哮喘代表15:558。[裁判。]
  2. Lucendo AJ(2015)基于meta分析的嗜酸性食管炎饮食管理指南。Curr Gastroenterol Rep: 464。[裁判。]
  3. Giriens B, Yan P, safrononeeva E, Zwahlen M, Reinhard A, et al.(2015) 1993 - 2013年瑞士沃州嗜酸性食管炎发病率上升:一项基于人群的研究。过敏70:1633 - 1639。[裁判。]
  4. Langley KG, Brown J, Gerber RJ, Fox J, Friez MJ, et al.(2015)除了Ohdo综合征:一个家族错义突变拓宽了MED12谱。Am J Genet A 167: 3180-3185。[裁判。]
  5. Moawad FJ,Dellon ES,Achem SR,Ljuldjuraj T,Green DJ,等。(2015)种族和性别对嗜酸性食管炎特征的影响。临床胃-肝14:23-30[裁判。]
  6. Sengupta N、Tapper EB、Corban C、Sommers T、Leffler DA等。(2015)2004-2014年间因食管食物团块嵌塞而进入急诊科的173名患者的病因和并发症的临床预测因素。营养药物治疗42:91-98[裁判。]
  7. Neuhuber WL, Raab M, Berthoud HR, world J(2006)哺乳动物食管神经支配。《胚胎细胞生物学》185:1-73。[裁判。]
  8. Goyal OK, Chauhury A(2008)正常食管运动生理学。J clinical Gastroenterol 42: 610-619。[裁判。]
  9. Santander C, Chavarria Herbozo CM, Becerro Gonzalez I, Burgos Santamaria D(2015)嗜酸性食管炎食管运动功能受损Rev Esp Enferm Dig 107。[裁判。]
  10. Abdou E, Hazell AS(2015)硫胺缺乏:病理生理机制的更新和未来的治疗考虑。神经化学学报40:353-361。[裁判。]
  11. Brown G(2014)硫胺素运输和代谢缺陷。J Inherit Metab Dis 37: 577-585。[裁判。]
  12. Quadri G, McQuillin A, Guerrini I, Thomson AD, Cherian R, et al.(2014)来自硫胺转运体2基因溶质载体SLC19A3的酒精依赖综合征遗传易感证据。精神病学专题24:122-123。[裁判。]
  13. Sharma A,Bist R,Bubber P(2013)硫胺素缺乏引起小家鼠脑线粒体氧化应激。生理生化杂志69:539-546[裁判。]
  14. Bravata V,Minafra L,Callari G,Gelfi C,Edoardo Grimaldi LM(2014)散发性脚气病中硫胺素转运体基因的分析。营养30:485-488。[裁判。]
  15. Gioda CR, Capettini LS, Cruz JS, Lemos VS(2014)在大鼠中,硫胺缺乏导致一氧化氮生成减少和血管功能障碍。心血管疾病24:183-188。[裁判。]
  16. Sweet RL,Zastre JA(2013)维生素B1缺乏诱导的HIF1α介导的基因表达。《国际营养杂志》83:188-197。[裁判。]
  17. Kanngiesser M, Mair N, Lim HY, Zschiebsch K, Blees J, et al.(2014)缺氧诱导因子1调节冷热疼痛敏感性和持续性。抗氧化还原信号20:2555-2571。[裁判。]
  18. De Andrade Ja,Gayer Cr,Nogueira NP,Paes Mc,Bastos VL等。(2014)硫胺素缺乏对败血症实验模型中炎症,氧化应激和细胞迁移的影响。J Inclamm(Lond)11:11。[裁判。]
  19. Gangolf M, Czerniecki J, Radermecker M, Detry O, Nisolle M, et al.(2010)人体内硫胺素的状况以及活检和培养细胞中磷酸化硫胺素衍生物的含量。PLoS One 5: e13616。[裁判。]
  20. Lonsdale D(2007)三例报告说明红细胞转酮醇酶的临床应用。基于Evid的补体交替医学4:47 -250。[裁判。]
  21. Peters R A(1938)维生素B1的卡托鲁林试验。生物化学J 32:2031-2036[裁判。]
  22. Lonsdale D(2006)关于硫胺素(e)及其衍生物的生物化学、代谢和临床益处的综述。基于Evid的补体替代医学3:49-59[裁判。]
  23. casiels M, Sniekers M, Fraccascia P, Mannaerts GP, Van Veldhoven PP(2007)硫胺焦磷酸依赖的2-羟基酰基辅酶a裂解酶在3-甲基支链脂肪酸和2-羟基直链脂肪酸过氧化物酶体代谢中的作用。生物化学Soc 35: 876-880。[裁判。]
  24. (2007)哺乳动物过氧化物酶体中硫胺素焦磷酸盐的存在。BMC Biochem 8:10。[裁判。]
  25. (2011)硫胺素焦磷酸盐在低聚化中的作用。Acta botanica sinica(云南植物学报)1814:1226-1233。[裁判。]
  26. Rosas Ballina M,Olofsson PS,Ochani M,Valdés-Ferrer SI,Levine YA等。(2011)乙酰胆碱合成T细胞在迷走神经回路中传递神经信号。科学334:98-101[裁判。]
  27. Szutowicz A, Bielarczyk H, Jankowska-Kulawy A, Pawelczyk T, Ronowska A(2013)乙酰辅酶A是神经退行性疾病过程中胆碱能神经元存活或死亡的关键因素。神经化学38:1523-1542。[裁判。]
  28. 赖利CM, Day RL, Greeley DM,等(1949)中枢自主神经功能障碍伴缺陷性流泪。报告5例。Pediat 3: 468 - 478。[裁判。]
  29. Riley CM, Moore RH(1966)家族性自主神经异常与相关疾病的鉴别。Pediat 37: 435 - 446。[裁判。]
  30. Bisschop PH, Fliers E, Kalsbeek A(2015)肝脏葡萄糖生产的自主调节。Compr Physiol 5: 147-165。[裁判。]
  31. 《二尖瓣脱垂中的自主神经障碍》,美国医学杂志67:236-244[裁判。]
  32. 原发性二尖瓣脱垂患者红细胞镁与症状、二尖瓣叶病、关节活动过度和自主调节的关系。磁石痕量元素10:205-214。[裁判。]
  33. Colasanti A,Esquivel G,Schruers KJ,Griez EJ(2012),关于二氧化碳的精神药物效应。Curr Pharm Des 18:5627-5637[裁判。]
  34. Johnson TS, Young JB, Landsberg L(1983)大鼠急性和慢性缺氧的交感肾上腺反应。J Clin Invest 71: 1263-1272。[裁判。]
  35. Ceylan M,Sener S,Bayraktar C Kavutcu M(2010)注意缺陷/多动障碍儿童和青少年患者的氧化失衡。神经精神药物生物精神病学进展54:1491-1494[裁判。]
  36. Cemek M, Dede S, Baviroglu F, Caksen H, Cemek F,Yuca K(2005)急性中耳炎和扁桃体炎儿童的氧化剂和抗氧化剂水平:一项比较研究。小儿耳鼻咽喉69:823- 827。[裁判。]
  37. Lonsdale D, Faulkner WR, Price JW, Smeby RR(1969)与高丙酮酸血症、高丙氨酸血症和高丙氨酸尿相关的间歇性小脑共济失调。儿科43:1025 - 1034。[裁判。]
  38. Ram G,Lee J,Ott M,Brown Whitehorn TF,Cianferoni A,等。(2015)嗜酸性食管炎和过敏性鼻炎患儿食管嗜酸性粒细胞增多的季节性加重。安过敏性哮喘免疫学115:224-228[裁判。]
  39. Bernstein JA, Singh U(2015)非变应性鼻炎的神经异常。过敏性哮喘代表15:18。[裁判。]
  40. Lonsdale D(2004)硫胺四氢糠酰二硫化:一种鲜为人知的治疗药物。医学科学监测10:199-203。[裁判。]
  41. Lonsdale D(2015)《硫胺素和镁缺乏症:疾病的关键》。医学假说84:129-134[裁判。]
  42. Fernhoff PM,Lubitz D,Danner DJ,Dembure PP,Schwartz HP等(1985)枫糖浆尿病中的硫胺素反应。儿科研究19:1011-1016[裁判。]
  43. Banka S,de Goede C,Yue WW,Morris AA,von Bremen B等。(2014)扩大硫胺素焦磷酸激酶缺乏症的临床和分子谱:一种由TPK1突变引起的可治疗神经系统疾病。分子遗传学代谢113:301-306[裁判。]
  44. Hills JI,Golub MS,B ettendorff L,Keen CL(2012)硫胺素四氢呋喃二硫化物对幼年DBA/2J小鼠行为的影响。神经毒性畸胎34:242-252[裁判。]
  45. Nozaki S, Mizuma H, Tanaka M, Jin G, Tahara T, et al. (2009) Thiamine tetrahydrofurfuryl二硫化能改善大鼠体力疲劳负荷时的能量代谢和体力表现。Nutr Res 29: 867- 872。[裁判。]
  46. Lonsdale D(1982)硫胺素四氢呋喃二硫化物对DBA/2J小鼠听源性癫痫发作的影响。发展药理学研究4:28-36[裁判。]
  47. (2012)长期口服苯硫胺补充剂对I型糖尿病患者周围神经功能和炎症标志物的影响:一项为期24个月的双盲、随机、安慰剂对照试验。糖尿病护理35:1095-1097。[裁判。]
  48. Bozic I, Savic D, Laketa D, Bjelobaba I, Milenkovic I, et al. (2015) Benfotiamine可减弱LPS刺激的BV-2小胶质细胞的炎症反应。PLoS One 10: e0118372。[裁判。]
  49. Benfotiamine是一种合成的S-酰基硫胺衍生物,与脂溶性硫胺二硫化衍生物相比,具有不同的作用机制和药理特征。BMC Pharmacol 8: 10。[裁判。]
  50. Matsui K,Nakahara H,Watanabe H,Tamatsu H,Nakazawa M,et al.(1985)通过硫胺素四氢呋喃二硫化物(TTFD)抑制花生四烯酸级联线激活,如狗的心肺制剂所证明。药理学杂志39:375-379[裁判。]
  51. Coskun R, Turan MI, Turan IS, Gulapoglu M(2014)硫胺焦磷酸而非硫胺对顺铂诱导的大鼠心脏毒性的保护作用。药物化学毒物37:290-294。[裁判。]
  52. Baker H, Frank O(1976)与水溶性硫胺比较,大蒜胺的吸收、利用和临床疗效。营养科学维生素醇(东京)增刊:63-68。[裁判。]
  53. Slack MA,Ogbogu PU,Phillips G,Platts Mills TA,Erwin EA(2015)一组成人和儿童嗜酸性食管炎患者的血清维生素D水平。Ann过敏性哮喘免疫学115:45-50[裁判。]

在此处下载临时PDF

PDF

文章信息

Aritcle类型:病例报告

引用:嗜酸性食管炎是糖敏感疾病吗?J胃失调2 (1):doi http://dx.doi.org/10.16966/2381-8689.114

版权:©2016 Lonsdale D.这是一篇开放获取的文章,在知识共享署名许可的条款下发布,该条款允许在任何媒体上无限制地使用、发布和复制,前提是注明原作者和来源。

出版历史:

  • 收到日期:2016年1月18日

  • 接受日期:2016年1月21日

  • 发表日期:2016年1月26日