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Abstract
Objectives: To compare the ability of logistic regression and generalized boosted modelling (GBM) to estimate treatment effects and balance 
covariates in inverse probability of treatment weighting (IPTW) and to explore the independent impact of different types of medical insurance on 
drug costs of outpatients with coronary heart disease based on this method.

Methods: This study was used to evaluate the performance of logistic regression and GBM in IPTW under a Monte Carlo study with the simulated 
design of linear and nonlinear correlations between treatment variable and covariates of different sample sizes (n=500, 2000). The assessment 
indicators included average standardized absolute mean difference (ASAM), point estimation, bias, relative bias, standard error, mean square error, 
95% confidence interval coverage rate, distribution of weights and an empirical study of outpatients with coronary heart disease was carried out 
after simulation.

Results: The simulations show that GBM in propensity score weighting is superior to logistic regression in the lower bias and mean square error and 
it achieves better covariate balance, especially in nonlinear conditioning models. And in this case study. It’s found that GBM in IPTW has better ability 
to balance the confounding factors compared with logistic regression. The weighted results show that the drug costs of outpatients with coronary 
heart disease of Urban Employee Basic Medical Insurance increase by 256.35 Yuan on average compared with those of Urban-Rural Resident Basic 
Medical Insurance.

Conclusion: It may be better to control confounding factors in case of the unknown relationship between the treatment variable and covariates 
by IPTW with GBM. There is still a certain gap in drug costs among different types of medical insurance for patients with coronary heart disease 
according to this study, which provides a reasonable scientific basis for the optimal allocation of medical insurance system and health resources in 
coronary heart disease.
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Introduction
Although randomized controlled trials are regarded as the gold 

standard in research design, they are often not implemented or cannot 
accurately reflect the effect of interest in real experimental designs or 
social and health sciences due to ethics, time and cost constraints and 
other reasons [1,2]. A large quantity of observational data has become 
easily available with the development of hospital informatization. 
However, observational studies cannot control the confounding 
factors between treatment and non-treatment groups by means of 
random assignment. Therefore, selection bias often occurs when 
estimating the treatment effect. Traditional methods used to reduce 
bias in observational studies include regression models, matching 
and stratification, but these methods may not be suitable for studies 

with a large number of covariates [3-5]. Propensity score methods can 
transform multiple covariates (multi-dimensional) into propensity 
scores (one-dimensional), which can solve these problems. The 
application of propensity score methods includes mainly matching, 
stratification, weighting and regression adjustment [6-9]. Propensity 
score weighting has substantial advantages over matching and is used 
to analyse treatment effects by retaining all the individuals in the 
sample, which can significantly improve statistical efficiency. In recent 
years, propensity score weighting has been increasingly being used in 
the medical field [10-12].

Propensity scores are commonly estimated by logistic regression 
[13-15]. Modelling requires several assumptions related to selecting 
variables and specifying functional forms [16-18]. Therefore, 
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 The conditioning model for predicting propensity scores
Logistic regression: The process of obtaining propensity scores 

with logistic regression is very simple and easy to understand and 
perform, but the model must be transformed into a linear model 
via an appropriate connection function such as the logit function 
[31]. However, when the relationship between covariates and 
transformation variables does not satisfy the linear hypothesis, the 
values of the propensity scores are often unreliable.

Generalized boosted modelling: GBM is a modern nonparametric 
boosting method based on a regression tree that can fit multiple 
models with a regression tree as a weak classifier and then use a 
boosting algorithm to merge the predictions from each model [32,33]. 
Regression trees can be applied to continuous, normal, ordered and 
missing independent variables to automatically obtain nonlinear 
relations and interactions [34]. In contrast to logistic regression, there 
is no need to set the functional form of the predictive variable. The 
boosting algorithm can combine many simple models into a more 
complex model. Compared with a simple regression tree, the boosting 
algorithm can obtain smooth fitting and good prediction and to a large 
extent, can avoid over fitting the data [35,36]. Thus, GBM is used 
to incorporate a large number of measured baseline covariates to 
fit a conditioning model. The formula for estimating a propensity 
score is ( ) log ( ( )) log( ( ) / (1 ( )))g X it e X e X e X= = −  [37]. Specifically, 
GBM begins with a regression tree and sets 

0
( ) log / (1 )X w wg

∧

= −  as the 
initial value, where w is the mean of the treatment variable in the 
sample. Then, an adjustment function (X)h  is found to improve 
the fitting degree of the model. (X)h  can be in any form: here, it is 
the regression tree obtained by fitting the residuals of the currently 
estimated log ( ( ))it e X with X. log ( ( ))it e X  is updated by )()(ˆ XhXg λ+  
by means of continuous iteration, and the estimation of the log-
likelihood increases correspondingly with every iteration. λ is a 
shrinkage coefficient: generally, the smaller λ  is, the smoother 
the fit is. The shrinkage coefficient ranges from 0 to 1. McCaffrey 
suggested stopping the number of iterations when the average 
standardized absolute mean difference (ASAM) on measured 
baseline covariates is minimized [37]. In this study, the shrinkage 
coefficient is 0.01, and the stopping rule is to minimize the ASAM 
across covariates.

Simulation design
The simulated structure described by Shenyang Guo and Mark 

W. Fraser in the book named “Propensity Score Analysis: Statistics 
Methods and Applications” was modified slightly in this study [1]. 
First, five baseline covariates ( 51 XX − ) were considered 1X , 

3X and 
5X were continuous variables that followed a normal distribution 

with a mean vector (3 11 6) and standard deviation vector (0.3 
4.0 2.5), and 2X  and 4X were classified variables of a Bernoulli 
distribution. A binary treatment variable with two groups of 
treatment exposure was created, three variables ( 1X , 2X , and

5X ) were used to generate the treatment variable (W ), and the 
probability of the treatment assignment for each group was defined 
as Pr( 1 ) 1/ (1 exp( ( ( , ) )))i iW X f X β ν= = + − + . Function f changed with the 
variation of coefficient β  in different situations, and the average 
treatment probability was approximately 0.5. Variables 1X  to 4X  were 

subjective decisions are often involved in finding the best model. 
Moreover, when one of these assumptions is wrong, covariate balance 
may be impossible to achieve by adjusting propensity scores, which 
may lead to bias in the estimation of the treatment effect [19,20]. In 
addition, logistic regression cannot address complex relationships 
such as non linear and interaction effects between covariates 
[21-23]. Generalized boosted modelling (GBM), one of the latest 
prediction methods in machine learning, is superior to logistic 
regression in addressing high-dimensional and missing data 
[1,24,25] and can be used as an alternative nonparametric method 
to achieve the same purpose but with fewer assumptions and more 
accurate results. Unfortunately, GBM is not widely used with 
propensity scores. Therefore, in the absence of hidden bias and 
different sample sizes, this study intends to construct linear and 
nonlinear conditioning models to compare the ability of logistic 
regression and GBM to estimate the treatment effect and balance 
covariates in propensity score weighting to provide some reference 
for the processing of confounding factors of various complex data. 
In Chongqing, Coronary heart disease (CHD) was included in 
special disease management in 2012. The reimbursement rates of 
different types of medical insurance are different [26,27], so we 
wanted to analyse the independent impact of medical insurance 
between urban employees and urban-rural residents on drug costs 
of outpatients with CHD. However, because of the large sample size of 
outpatient data and the uneven baseline, we used this case study as an 
empirical analysis.

Inverse Probability of Treatment Weighting
Basic assumptions and the average treatment effect

As proposed originally by Rosenbaum PR, et al. [28], the propensity 
score refers to the conditional probability that members (i 1,..., )i N=  
were assigned to a particular treatment group ( 1)W =  rather than 
non-treatment group ( 0)W =  given the observed covariate vector 

(X) pr(W 1 )e X= = , where )(Xe is also called a balancing score and X  
is a vector of observed baseline covariates that may impact the selection 
of the treatment and outcome variables. Treatment assignments are 
independent of the observed baseline covariates given the propensity 
score )(XeWX ⊥ . Therefore, if the propensity scores of the treatment 
and non-treatment groups are similar, each member has the same 
probability of being assigned to the treatment group as in a randomized 
experiment, even though they have different values of some covariates. 
If the strongly ignorable treatment assumption (SITA) is achieved, that 
is, the potential outcomes of the treatment ( 1Y ) and non-treatment ( 0Y ) 
groups are independent of the selection of treatment X)( 10 WYY ⊥， , then 
an unbiased estimate of the average treatment effect (ATE) is written as 

1 0[(Y 1) (Y 0) ]ATE E W W X= = − = . Propensity score weighting aims to assign a 
weight to every member such that the weights represent the whole. 
The method of estimating ATE is known as the inverse probability 
of treatment weighting (IPTW). The weight for the treatment group 
is )(/1 Xe  and for the non-treatment group is 1/ (1 ( ))e X− . Instead 
of creating similar propensity between two groups, IPTW creates a 
weighted analysis with unequal weights, which is easy to implement. 
Therefore, if propensity scores are properly estimated, the weights can 
explain the difference in the observed covariate distribution between 
the treatment and non-treatment groups, and ATE is equal to the 
weighted average of the difference between the outcomes of the two 

groups, that is, 
1 1

(1 )1 1
( ) 1 ( )

N N
i i i i

i ii i

WY W YATE
N e X N e X= =

−
= −

−∑ ∑  [29]. When )( iXe  is 

estimated by machine learning, no explicit formula may exist for 
variance estimation. To show the weights more clearly, Imbens GW 
[30] proposed an alternative standardized estimator for ATE, which 
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used to compute a continuous outcome variable (Y ) from the following 
regression equation: uWXY ii +++= ταα0 . The true treatment effect 
(τ ) was equal to 1.5, which was known in advance. The error terms 
for the treatment ( v ) and outcome ( u ) variables, which represented 
the amount of unexplained variance after accounting for independent 
variables, were both generated from normal distributions with mean 
0 and variance 1. According to SITA, when 5X  was correlated with 
the outcome error ( u ) but the treatment error ( v ) and outcome 
error ( u ) were uncorrelated, no hidden bias existed in specifying the 
conditioning model. The correlation coefficients for distinct pairs of 
variables among 1X , 3X , and 5X and u  were 0.2 (

31XXr ), 0.15(
53 XXr ), 

and 0.5
5

(r )uX , and the relationships among the other variables were 
set to zero. Weak relationships among the variables ( 51 XX − ) were 
considered to reduce potential variability in the simulated data. In this 
study, two scenarios were considered to estimate ATE using IPTW, 
and propensity scores were estimated using logistic regression and 
GBM. The two scenarios were as follows:

Scenario 1: The relationship between the treatment 
variable and baseline covariates was linear, that is, the correct 
conditional model for predicting propensity scores was 

][ 5342310 vXXXW ++++= ββββ , and the outcome regression 
model was ][ 443322110 uWXXXXY W ++++++= αααααα .

Scenario 2: The relationship between the treatment variable 
and baseline covariates was nonlinear. Additionally, there 
were no interaction effects and quadratic terms, that is, the 
correct conditional model for predicting propensity scores was 

[ ]vXXXXXXXXW +++++++= 436535
2
345342310 βββββββ , and the outcome 

regression model was ][ 443322110 uWXXXXY W ++++++= αααααα . Here,
1000 =α , iα =(0.7, 0.25, -0.4, 0.15), and iβ =(0, -0.28, 0.15, 0.5, -0.042, 

0.09, -0.056). Both scenarios were simulated with 1000 datasets of 
sample sizes N=500 and N=2000.

Statistical analysis
All analyses were conducted in the R software environment (version 

3.5.3) and STATA (version 15.0). IPTW with GBM was implemented 
using the ps function from the twang package, and IPTW with 
logistic regression was implemented using the dxwts function. All 
other analyses were conducted in STATA. The following were used as 
metrics to assess the different conditioning models:

Average standardized absolute mean difference: used to test the 
balance of baseline covariates, a low ASAM indicates that specific 
values of baseline covariates between two groups are similar; The 
performance of estimated treatment effects: point estimation ( Wα ), 
bias, relative bias (RB) and standard error of the effect estimation (SE); 
Mean Square Error (MSE): the variation in the sampling distribution 
of estimated treatment effects, a smaller value indicates higher model 
accuracy and less variation; 95% CI coverage rate: the percentage of 
the 95% confidence interval estimated by the model containing the 
true treatment effect; Distribution of weights: propensity scores range 
from 0 to 1. Values close to 0 or 1 entail extreme weights that reduce 
the accuracy of IPTW.

All indicators were calculated as the average of 1000 results.

Results
Simulation results

The treatment effect and accuracy of the models: When 
the conditioning model was linear, the RB of logistic regression 
(N=500:0.20%, N=2000:0.17%) was slightly lower than that of GBM 

(N=500:0.28%, N=2000:0.27%). The average standard error, MSE and 
95% CI coverage rate were similar, and the standard error and MSE 
decreased with increasing sample size, while the 95% CI coverage 
rate decreased with increasing sample size. When the conditioning 
model was nonlinear, the RB of logistic regression (N=500:0.55%, 
N=2000:0.77%) increased significantly, and many outliers were 
observed in the distribution of bias, while GBM remained stable 
(N=2000:0.37%). The average standard error (N=500:0.1401, 
N=2000:0.0909) and MSE (N=500:0.0428, N=2000:0.0175) of 
logistic regression increased significantly and were higher than 
those of GBM under the same sample size. The 95% CI coverage rate 
(N=500:81.7%, N=2000:82.7%) decreased significantly and was lower 
than that of GBM. The larger the sample size was, the better the results 
were (Table 1 and Figure 1).

The balance of baseline covariates: The distribution of ASAM in 
the original sample was highly imbalanced between the two groups 
(scenario 1: average ASAM>0.2; scenario 2: average ASAM>0.4). 
When the conditioning model was linear, balanced baseline covariates 
could be achieved. Compared with GBM, the average ASAM of 
logistic regression was low (N=500:0.048, N=2000:0.025). When the 
conditioning model was nonlinear, the ability to achieve covariate 
balance based on GBM was better than that of logistic regression, 
and the average ASAM of logistic regression (N=500:0.738, N=2000: 
0.452) increased significantly, even higher than in the original sample 
(N=500:0.421, N=2000:0.273). In addition, logistic regression had a 
large number of high outliers in both scenarios (Table 1 and Figure 2).

Distribution of weights: When the conditioning model was 
linear, the distributions of weights by logistic regression and GBM 
were similar under the same sample size, all of which are centred on 
1. When the conditioning model was nonlinear, logistic regression 
generated a large number of extremely high weights under different 
sample sizes. The average weights were 22.07 and 5.79, and the average 
maximum weights were 10126.87 and 7462.96, respectively. By 
contrast, the weights generated by GBM remained stable. The average 
weights were 1.45 and 1.56, and the average maximum weights were 
16.17 and 44.09, respectively (Table 2).

Case study
Outpatient data of patients with CHD were selected to examine 

the performance of IPTW with the different methods for estimating 
ATE. The outpatient data from a tier-3 hospital in Chongqing collected 
from January 2016 to December 2018 consisted of demographic 
information and drug costs of patients. Inclusion criteria: hospital 
admissions of CHD were identified based on the first diagnosis with 
International Classification of Diseases 10th revision (ICD-10) codes of 
I20-I25. Exclusion criteria: combination of other diseases. The study 
was intended to analyse the independent impact of different types of 
medical insurance on drug costs in outpatients with CHD, because 
the cost is also affected by other demographic factors, so propensity 
score weighting is used to control other confounding factors. The 
outcome variables of this study were the drug costs of outpatients with 
CHD, exposure variables were different types of medical insurance, 
potential confounding factors included gender, age, category of drug, 
drug’s zero-profit policy doctor’s title and type of department and 
16575 people were included, of which 15136 were ensured with Urban 
Employee Basic Medical Insurance (UEBMI) and 1439 with Urban-
Rural Resident Basic Medical Insurance (URRBMI).

Balance of covariates and weights: Before weighting, the maximum 
and average ASAM were 0.393 and 0.179, respectively. The other 
variables, except the category of drug, varied between the two groups 
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a)

b)

Figure 1 
a: Distribution of bias with sample sizes of 500 (left) and 2000 (right) by two methods in scenario 1.
b: Distribution of bias with sample sizes of 500 (left) and 2000 (right) by two methods in scenario 2.

Table 1: The results of IPTW with logistic regression and GBM under two scenarios.

Sample size Method SE Bias RB MSE 95% CI coverage rate ASAM

Scenario 1 N=500 Logistic 1.4970 0.0950 0.0030 0.20% 0.0103 93.2% 0.048

GBM 1.4958 0.0950 0.0042 0.28% 0.0100 93.5% 0.121

N=2000 Logistic 1.4975 0.0484 0.0025 0.17% 0.0023 93.9% 0.025

GBM 1.4960 0.0475 0.0040 0.27% 0.0022 94.9% 0.073

Scenario 2 N=500 Logistic 1.4918 0.1401 0.0082 0.55% 0.0428 81.7% 0.738

GBM 1.4786 0.1297 0.0214 1.43% 0.0199 92.9% 0.273

N=2000 Logistic 1.4884 0.0909 0.0116 0.77% 0.0175 82.7% 0.452

GBM 1.4944 0.0808 0.0056 0.37% 0.0077 92.9% 0.195

Wα

Table 2: Distribution of weights by IPTW with logistic regression and GBM under two scenarios.

Sample size Method
Distribution of weights

Min P25 P50 Mean P75 Max
Scenario 1 N=500 Logistic 1.01 1.24 1.53 1.99 2.12 20.2

GBM 1.02 1.21 1.43 1.74 1.90 8.67
N=2000 Logistic 1.01 1.25 1.54 2.00 2.14 32.55

GBM 1.02 1.23 1.47 1.85 2.02 13.63
Scenario 2 N=500 Logistic 1.00 1.02 1.11 22.07 1.46 10126.87

GBM 1.00 1.04 1.12 1.45 1.38 16.17
N=2000 Logistic 1.00 1.02 1.10 5.79 1.44 7462.96

GBM 1.00 1.03 1.10 1.56 1.38 44.09
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a)

b)

Figure 2
a: Distribution of ASAM with sample sizes of 500 (left) and 2000 (right) by two methods in scenario 1.
b: Distribution of ASAM with sample sizes of 500 (left) and 2000 (right) by two methods in scenario 2.

(P<0.05). After IPTW with logistic regression, the maximum and 
average ASAM were 0.090 and 0.030, respectively. The average weight 
was 2.00, and the category of drugs and drug’s zero-profit policy were 
different between the two groups (P<0.05). After IPTW with GBM, the 
maximum and average ASAM were 0.081and 0.027, respectively. The 
average weights were 1.95, and no difference in any variables between 
the two groups was observed (P>0.05) (Table 3). GBM performed 
better than logistic regression, so IPTW with GBM was used in the 
subsequent analysis.

Estimation of ATE: After weighting, the drug costs of outpatients 
with UEBMI increased by 256.35 Yuan on average compared with 
those of outpatients with URRBMI. The difference was statistically 
significant (Table 4).

Sensitivity analysis: For sensitivity analysis, we repeated the 
analyses after excluding patients in the tails of the distribution of 
propensity scores [38]. And the conclusions were consistent with those 
of the primary analyses (Table 5).

Discussion and Conclusion
The main objective of IPTW is to achieve covariate balance between 

treatment and non-treatment groups to obtain an effective estimation 
of the treatment effect. Most methods use logistic regression to 
predict propensity scores, but the model assumptions may not be 
valid. Therefore, the main purpose of this study is to compare the 
ability of logistic regression and GBM to estimate the treatment effect 
and covariate balance in propensity score weighting under linear or 
nonlinear conditioning models. Although Jacqueline M Burgette, et 
al., Xin M, Fullerton B and other researchers [39-41] compared logistic 

regression with GBM, they did not consider the interaction effect and 
quadratic relationships among the treatment variable and covariates. 
Moreover, this study assessed the covariate balance and distribution 
of weights to make the results more reliable. In addition, the design 
ensured that no hidden bias existed in estimating the conditioning 
model, that is, the source of the difference between the two groups 
could be determined and propensity score weighting could be used to 
control the bias.

The results showed that both logistic regression with only main 
effects and GBM usually achieved covariate balance and provided 
acceptable estimation of treatment effects, regardless of sample size. 
The distribution of weights was centralized with 1 as the centre, the 
95% CI coverage rate was close to 95%, and the accuracies of the 
models were similar. Abdia Y, et al., Pirracchio R, et al. [42,43] also 
noted that logistic regression produced lower ASAM and smaller 
bias than did machine learning under a linear model. However, 
when the model did not consider the interaction effect and quadratic 
terms, regardless of sample size, the ASAM values estimated by 
logistic regression were higher than those of the unweighted values. 
Moreover, the skewed distribution produced a large number of high 
outliers and failed to achieve balanced covariates. These results were 
similar to those observed by Abdia Y, et al., Lee BK, et al. and his 
colleagues [42,44], where the estimated weights were highly scattered. 
For example, when N=2000, the range was from 1 to 7462.96. The 
main reason may be that the degree of overlap on covariates between 
two groups is not high, and only a few members of any group can 
replace other members in the other group. Another study showed 
that if the estimated weights are highly variable, the weights might 
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Covariates
Unweighting IPTW with logistic regression IPTW with GBM

UEBMI
(n=15136)

URRBMI
(n=1439) ASAM P UEBMI

(n=15136)
URRBMI
(n=1439) ASAM P UEBMI

(n=15136)
URRBMI
(n=1439) ASAM P

Gender
Male 62.1% 57.1% 0.103

<0.001
61.7% 62.2% 0.010

0.782
60.7% 60.6% 0.023

0.577
Female 37.9% 42.9% 0.103 38.3% 37.8% 0.010 38.3% 39.4% 0.023

Category of 
drug

Western 
Medicine 93.7% 93.3% 0.016

0.570
93.7% 95.7% 0.090

0.018
93.7% 93.7% 0.002

0.980
Non-Western 

Medicine 6.3% 6.7% 0.016 6.3% 4.3% 0.090 6.3% 6.3% 0.003

Drug’s zero-
profit policy

Before 58.8% 74.5% 0.321
<0.001

60.1% 64.3% 0.086
0.020

60.1% 63.4% 0.066
0.103

After 41.2% 25.5% 0.321 39.9% 35.7% 0.086 39.9% 36.6% 0.066

Doctor’s 
title

primary 4.4% 2.2% 0.105

<0.001

4.2% 3.8% 0.017

0.343

4.2% 3.2% 0.051

0.491
intermediate 21.2% 15.9% 0.129 20.7% 23.4% 0.066 20.7% 21.6% 0.022

Deputy senior 34.5% 28.0% 0.136 33.9% 31.2% 0.057 33.9% 32.4% 0.033

Senior 40.0% 53.9% 0.283 41.2% 41.6% 0.008 41.2% 42.9% 0.034

Type of 
department

The others 3.0% 5.2% 0.128

<0.001

3.2% 3.2% 0.001

0.812

3.2% 3.4% 0.013

0.554

Endocrinology 
and 

Metabolism
3.2% 0.4% 0.157 2.9% 2.1% 0.047 2.9% 1.6% 0.081

General 
internal 

medicine
5.5% 3.9% 0.069 5.3% 4.7% 0.025 5.3% 5.4% 0.003

TCM -WM 14.8% 2.6% 0.345 13.8% 15.0% 0.036 13.8% 13.1% 0.019

Cardiovascular 66.1% 84.7% 0.393 67.7% 67.9% 0.004 67.7% 70.1% 0.051

Geriatrics 7.4% 3.2% 0.162 7.1% 7.0% 0.004 7.1% 6.4% 0.025

Age(year)

0~ 1.8% 6.3% 0.033

<0.001

2.2% 2.2% 0.001

0.740

2.2% 2.2% 0.003

0.926
45~59 16.1% 22.0% 0.159 16.6% 15.5% 0.031 16.6% 16.0% 0.018

60~74 56.8% 47.0% 0.197 55.9% 56.7% 0.016 55.9% 56.2% 0.006

75~ 25.3% 24.7% 0.012 25.2% 25.7% 0.009 25.2% 25.6% 0.008

Maximum 
ASAM 0.393 0.090 0.081

Average 
ASAM 0.179 0.030 0.027

Average 
weights - 2.000 1.950

Table 3: ASAM and P values in covariates of two groups before and after weighting.

lead to poor accuracy of the ATE [45-48]. The bias in this scenario 
was approximately 3 times larger than that in the linear scenario, 
the standard error was approximately 2 times larger, the MSE was 
approximately 8 times larger, and the 95% CI coverage rate was 
reduced by 10%. By contrast, the ASAM estimated by GBM remained 
steady and had a more symmetrical distribution. GBM provided good 
performance in terms of covariate balance. The weight distribution 
remained stable (e.g., when N=500, the range was from 1 to 16.17), the 
95% CI coverage rate was still greater than 90%, and other indicators 
were slightly worse. However, the performance of these indicators was 
better when N=2000, possibly because machine learning itself was 
more suitable for larger sample sizes. In addition, when the nonlinear 
relationship between covariates in the conditioning model was 
excessively complex, the logistic regression model could not be fitted. 

These results indicate that it may be important to balance covariates 
with interaction effects and quadratic terms, especially when the real 
model itself has interaction effects and quadratic terms. Alam S, et al., 
Franklin JM, et al., Lunt M and others [49-51] noted the importance 
of carefully selecting covariates and checking the balance of covariates 
with interaction effects, but because the treatment effect is not yet 
clear, this is seldom done in practice. Because IPTW directly uses 
propensity scores to control the bias caused by selection in outcome 
analysis, IPTW may be sensitive to model misspecification (i.e., when 
the covariates are inaccurate or omitted), and the distribution of 
weights and the covariate balance must be assessed. Some researchers 
have suggested that the distribution of weights (especially the average 
weight) should be evaluated to assess whether the conditioning model 
is correct and whether the model violates the relevant assumptions 



 
Sci Forschen

O p e n  H U B  f o r  S c i e n t i f i c  R e s e a r c h

Citation: Wang Y, Xie J, Liu X, Du J, Wu M, et al. (2019) Logistic Regression and Generalized Boosted Modelling in Inverse Probability of 
Treatment Weighting: A Simulation and Case Study of Outpatients with Coronary Heart Disease. J Epidemiol Public Health Rev 4(3): 
dx.doi.org/10.16966/2471-8211.178

7

Journal of Epidemiology and Public Health Reviews
Open Access Journal

[45,52]. GBM is a strong nonparametric learning algorithm [53]. 
Many of its features are beneficial to propensity score methods. The 
regression tree, a basic classification algorithm, is iterated continuously 
to find the optimal function combination form and to prevent over 
fitting [54]. A smaller shrinkage coefficient can be used to reduce 
the variability. By optimizing the number of iterations and piecewise 
constant model, the variability of propensity score is reduced, and the 
generated weights are more uniform [44]. Therefore, it may be better to 
use IPTW with GBM to control confounding factors in the case of an 
unknown relationship between the treatment variable and covariates.

In the empirical study, GBM was superior to logistic regression in 
terms of ASAM and average weights in IPTW. Two variables remained 
imbalanced between the two groups by IPTW with logistic regression, 
whereas all variables were balanced by IPTW with GBM. The outcome 
analysis showed that the drug costs of outpatients with CHD with 
UEBMI were 256.35 Yuan higher on average than those of outpatients 
with URRBMI. The proportion of medical insurance reimbursement 
for urban employees is higher than that for urban-rural residents, 
which leads to higher demand for medical services. The basic purpose 
of medical insurance is to lighten the economic burden of disease on 
individuals and reflect fairness [55,56]. Therefore, the gap between 
different types of medical insurance must be narrowed [57,58]. 
Medical staff should standardize the behaviour of diagnosis and 
treatment and rationally used rugs to reduce the burden of patients, 
especially for patients with chronic diseases who take medicines for a 
long time. While ensuring the quality of medical care, it is responsible 
to help patients clarify relevant medical insurance policies and make 
rational use of health resources. This study focuses on the performance 
of logistic regression and GBM in propensity score weighting without 
considering other propensity score methods, and only the interaction 
effect and quadratic terms are included in this simulation study 
without higher-order polynomials. These considerations must be 
addressed in future research.
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