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Abstract
Objective: The aim of this review was to assess the hypothesis that type 1 or 2 diabetes mellitus produced a decrease of brain serotonergic 

neurotransmission through measurement of plasma free fraction of L-tryptophan (FFT) and intensity-dependence auditory–evoked potentials 
(IDAEPs).

Methods: A diabetic mellitus (DM) model was produced through the administration of streptozotocin. After 7 days, the diabetic rats were 
divided into two groups. One group was treated with insulin and the other did not receive treatment. Their brainstems were removed to determine: 
L-tryptophan (L-Trp), 5-hydroxytryptamine (5-HT), and tryptophan-5-hydroxylase activity (TPH), besides its kinetics and activation through 
phosphorylating conditions. In addition, a series of cross-sectional studies were carried out in patients with diabetes type 1 and 2, with and without 
depression, in their plasma we determined FFT, and other amino acids unrelated to 5-HT metabolism; glucose and glycosylated hemoglobin. The 
IDAEP’s N1/P2 components were also determined.

Results: A decrease in the synthesis of brain serotonin during the diabetic state was confirmed, due to changes in the kinetics and phosphorylation 
capacity of TPH and a decreased expression of the THP molecule, which did not return to normal levels with insulin. Also, all diabetic patients 
showed a significant decrease of FFT in the plasma. The diabetic patients presented an increase in the slope of the amplitude/stimulus intensity 
function (ASF slope) of the N1/P2 component. It is interesting to mention that the ASF slope was steeper in the diabetic patients with depression 
in relation to patients diabetic but without depression.

Conclusions: The decrease of the FFT in plasma and the increase the N1/P2 component´s amplitude may reflect a functional relationship 
between the brain serotonergic tone and the diabetic metabolic changes. The increase of the ASF slope in patients with type 1 diabetes suggest 
that the response of the auditory cortex to sound intensity stimulus may be regulated by the brain serotonergic activity and that decreased 
serotonergic neurotransmission may provoke a different behavior of sensory cortices. Therefore, the IDAEP (N1/P2 component) may be an 
electrophysiological indicator of brain changes of serotonergic neurotransmission in patients with diabetes type 1 and 2. These changes may be 
related to the psycho-emotional manifestations observed in diabetic children like anxiety and depression.

Keywords: Type 1 or 2 diabetes; Brain serotonin; L-tryptophan; Tryptophan-5-hydroxylase; Auditory-evoked potentials (N1/P2 component)

Introduction
The study of peripheral markers of the brain serotonergic system in 

diabetic patients represents an opportunity to evaluate how the metabolic 
changes due to diabetes Mellitus (DM) may influence serotonin brain 
activity. The serotonergic system has a wide distribution in the brain, 
coming from a small group of multipolar neurons located on the midline 
of the brainstem. The distribution of the serotonergic neuronal system in 
the brain of humans and rats has been well described [1-3]. The specific 
neurotransmitter is serotonin (5-hydroxypriptamine, 5-HT), also acting 
as a neuromodulator which activates a large family of G protein-and 
ion-coupled, metabotropic receptors [3-5]. 5-HT is synthesized from 
L-tryptophan (L-Trp). L-Trp is an essential amino acid and the precursor 
for the biosynthesis of brain serotonin. There are two known fractions 
of plasma L-Trp: one bound to albumin, and another free [6]. The free 
fraction traverses the blood-brain barrier (BBB) and is taken up by 
serotonergic neurons to activate the synthesis of the neurotransmitter, 
5-HT [7-9]. There are several mechanisms proposed for the regulation 

of the amount of plasma L-Trp passing to the brain. One is a specific 
transport system [10] and another depends on its not binding to albumin 
[6]. These two mechanisms may compete at the BBB level [11] it is possible 
that the higher affinity of the carrier system at the brain capillary wall 
would strip L-Trp from albumin and increase its transport to the brain. 
A third regulator would be through the competition of the neutral amino 
acids (Phenylalanine, Valine, Leucine, Tyrosine, Isoleucine, NAA), which 
seem to share the carrier that transports L-Trp to the brain [12-15]. In 
the brain, L-Trp is hydroxylated in serotonergic neurons by the action 
of the enzyme tryptophan hydroxylase (EC 1.14.16.4, TPH) [16-19]. 
5-Hydroxytryptophan is then decarboxylated to 5-HT [20,21].

We have reported a specific change in the serotonergic system during 
the diabetic state, which consists of a decrease in the biosynthesis of 
serotonin due to a reduction in free fractions of L-tryptophan (FFT) 
in plasma and brain, together with a chronic inhibition of the enzyme 
tryptophan-5-hydroxylase activity [22,23]. The chronic decrease of L-Trp 
in the brain and in the TPH activity in animals with DM, as well as the 
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kinetic changes of TPH that consist of an increase of Km for L-Trp and a 
decrease of Vmax and a lower phosphorylation activity, where the inositol 
1,4,5 triphosphate (IP3), diacylglycerol, calcium/calmodulin-dependent 
protein kinase II, and cyclic adenosine monophosphate (cAMP), seem 
to be the mechanisms involved in the low activation of this metabolic 
cerebral pathway caused by DM [24].

However, when animals with DM were submitted to treatment with 
insulin they show a complete recovery in body weight and the brain 
L-Trp also returns to normal. Despite these physical and biochemical 
recoveries, the TPH activity remained impaired. This seems to indicate 
that the changes suffered by the enzyme system could be due to a 
different cause other than substrate changes, for instance, the fact that 
TPH activity remains inhibited after insulin treatment supports the 
possibility of a different pathophysiologic mechanism [23]. Recently we 
have reported that the expression of both isoforms of the TPH, in non-
insulin treated rats, was significantly decreased in comparison to control 
groups. However, it is important to mention, that while the diabetic rats 
treated with insulin showed a return to normal L-Trp concentration, the 
expression of both isoforms remained significantly decreased during 
the evolution of the diabetic state [25]. These findings tend to confirm 
that in diabetic rats treated with insulin, the mechanism of inhibition 
of the biosynthesis of brain serotonin may not be only due to a change 
related to the concentration of L-Trp. There is also a possibility that the 
outcome of all the metabolic changes involved in DM may be, among 
other, an alteration in the expression of the enzyme protein itself through 
mechanisms independent of specific encoding genes, similar to what has 
been shown during social stress [26-28], with a negative impact on the 
biosynthesis and functionality of this important neurotransmitter.

On the other hand, it is interesting and relevant for the present review 
that decreased 5-HT availability in the brain induces also an important 
functional brain alteration; it increases neuronal cortical activity in 
the auditory cortex (A1). This disturbance in cortical activity has been 
detected as a change in the N1/P2 component’s amplitude of the intensity 
dependent induced auditory potentials (IDAEP). An opposite effect is 
also observed when 5-HT neuronal activity increases on the auditory 
cortex [29-34], as we have observed in early malnourished rats and infants 
[35]. Indeed, these same conditions seem also to occur in human babies 
what suffered intrauterine growth restriction [36]. The IDAEP’s N1/P2 
component recorded from the scalp consists mainly of two overlapping 
subcomponents produced by two brain structures: there is converging 
evidence from intracranial recordings that the superior temporal plane 
and the lateral gyri are the main generators of these subcomponents. The 
N1 component of the individual dipole source is measured as the negative 
peak within 60 to120 ms, and the P2 component is measured as the positive 
peak within 110 to 210 ms [29-31,33,35,37]. So, it is accepted that these 
components are representative of auditory cortex integrative functions 
[38]. Therefore, here we have proposed the hypothesis that in humans 
with type 1 or 2 diabetes, the free fraction of L-Trp in the plasma and the 
IDAEP’s N1/P2 components may be also altered, reflecting brain changes 
in serotonergic neurotransmission. Quantification of these parameters 
evaluated in humans, can be useful as parameters of brain 5-HT synthesis.

Methods
To establish further support for this hypothesis, comparative cross-

sectional studies were carried in various groups of type 1 and 2 diabetics 
with and without depression [39-41]. During the diabetic state were 
determined in their plasma free and bound L-Trp, and other amino acids 
unrelated to 5-HT metabolism; albumin, free fatty acids, glucose and 
glycosylated hemoglobin and the IDAEP’s N1/P2 components. None 
of the diabetic patients was in remission. A brief description of these 
studies follows: The first study was formed by 34 children, 6.83-10.49 

years of age, selected from the Endocrinology Service of the Pediatric 
Hospital, XXI Century, National Medical Center, Mexican Institute of 
Social Security, Mexico City, Mexico [39]. Two groups were formed: The 
first group included 22 children with type 1 diabetes, according to the 
National Diabetes Group criteria, with a body mass index (BMI) normal 
for their age and without other underlying diseases. The second group 
was made up of 12 normal children within the same age range who served 
as control subjects. All children were fed a normal diet of 55 kcal/kg/
day (protein 30%, carbohydrates 55%, lipids 15%). Additionally, patients 
with diabetes were treated with a mixture of fast and intermediate-action 
insulin, 0.8-1U/kg/day. Three ml of blood were collected by venopuncture 
in borosilicate tubes containing 450 µL of ACD solution, which consisted 
of 3.6 mg sodium citrate, 9.9 mg citric acid, 11 mg dextrose, buffered 
with 50 mmol Tris acetate, pH 7.40 between 07:30 and 08:30 AM and 
12 hours after the last feeding. The tubes containing the blood samples 
were cooled immediately (0-4°C) on ice and centrifuged at 500 g in a 
refrigerated centrifuge to obtain the plasma sample. Aliquots were taken 
for the following biochemical assays: 100 µL for the FFT and 20 µL for 
total L-Trp (difference between total and FFT, was considered to be the 
albumin bound fraction), 200 µL for neutral amino acids (NAA), 25 µL 
for albumin, 50 µL for free fatty acids, 20 µL for glucose and 50 µL for 
glycated hemoglobin. 

A second study was planned in 23 children selected from the Service of 
Endocrinology. Two groups were formed [40]. The first group included 11 
children of both sexes with type 1 diabetes, aged 10.9 ± 0.39 (mean ± SD) 
years with a significantly low BMI of 17.71 ± 0.53 kg/m2 (Mann-Whitney 
U test) (P<0.01), according to the National Diabetes Group’s criteria. The 
second group was made up of 12 non-diabetic children with similar age 
range 11.25 ± 0.41 years and BMI 20.68 ± 0.59 kg/m2 who served as control 
subjects. No clinical signs of other pathologies were observed in any of the 
groups in the study. Children with type 1 diabetes were managed with 
a combination of fast- and intermediate-action insulin, 0.8-1.0 U/kg/da. 
Two ml of blood were collected and processed for assays as described above.

Results
Patients with type 1 diabetes had an evolution of 4.4 ± 2.7 years, when 

the study was performed. There were no differences in anthropometric 
data when compared with control children (Table 1). Glycemia and 
glycosylated hemoglobin were significantly elevated in patients with 
diabetes. Furthermore, these children had an increase in free fatty acids 
(Table 2) and NAA in plasma, when compared with normal children 
(Table 3). Note that the plasma albumin of both groups of children was 
similar (Table 2).

In the same way that the previous diabetic group, there were no 
differences in anthropometric data when compared with control children. 
Regarding glycemia, glycated hemoglobin, free fatty acids, and neutral 
amino acids in plasma, they were significantly elevated in these type 1 
diabetic children.

Data T1DM C
Age (years) 8.66 ± 1.83 8.25 ± 1.05
Sex
Males
Females

10
12

8
4

Body weight (kg) 30.82 ± 6.75 27.11 ± 5.46
Length (m) 1.30 ± 0.10 1.28 ± 0.03
Body mass index 17.35 ± 2.00 17.13 ± 2.18
Time of evolution (years) 4.41 ± 2.70 -

Table 1: Clinical data of schoolchildren with Type 1 Diabetes mellitus 
(T1DM) and controls (C)
Each point represents the mean value ± SD. Differences were determined 
by Student t test.
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In the course of other studies in diabetic patients with or without 
depression [41], we observed that the FFT in plasma and its ratio to neutral 
amino acids were also significantly reduced, suggesting a decrease in the 
transport of the precursor amino acid to the brain and in the serotonin 
synthesis rate, similar to that observed in diabetic animals [22-25]. These 
finding may be of relevance in the pathophysiology and in the clinical 
picture, which seems to be related to an alteration of 5-HT metabolism 
and neurotransmission in the brain and to the neuropsychiatric disorders 
in diabetic patients. Thus, we have proposed that the free fraction of 
L-tryptophan and its ratio to neutral amino acids in plasma may be 
clinically useful as indicators of brain serotonergic activity in these 
patients.

Besides, in the IDAEP represented by the N1/P2 component, the slope 
calculated as a function of the amplitude in mV, of component N1/P2 
with the intensity of the stimulus, is known as the ASF slope. In patients 
with diabetes, this function showed a significant increase compared with 
the controls (P<0.05) (Figures 1 and 2). It is interesting to mention that 
in another study, this ASF slope was steeper in diabetic patients with 
depression in relation to the diabetic patients without depression. In 
patients with only depression ASF was similar to that of diabetic patients, 
but less than the ASF in diabetic patients with depression [41].

We have also studied other possible functional alterations in a group of 
women with type 2 diabetes in order to get further information on their 
serotonergic metabolism and related brain function [42]. The diabetic 
patients were overweight and a reduction in FFA and NAA was also 
confirmed in plasma together with a decreased free, bound to albumin 
and total L-Trp [42].

Discussion
From these results we concluded that the decrease of the FFT in plasma 

and the increase in the N1/P2 component amplitude do reflect metabolic 
and functional disturbances secondary to the diabetic state, and that there 
is a relationship of ASF and the actual modified serotonergic activity in 
the auditory cortex (A1), suggesting that the response of the A1 to sound 
intensity stimuli may be regulated by the serotonergic tone whose decrease 

due to the metabolic changes described, may provoke a different behavior 
of the sensory cortex, including the auditory cortex [30-36]. Therefore the 
IDAEP-N1/P2 component may be an electrophysiological indicator of 
brain changes of the serotonergic neurotransmission in children with type 
1 diabetes. The altered responses of the sensory cortex to environmental 
stimuli might be related to the psychoemotional manifestations observed 
in diabetic children, such as anxiety and depression [41,43-46]. It is 
interesting and relevant for this study that decreased 5-HT availability in 
the brain does increase neuronal cortical activity in A1 and as reported in 
the auditory cortex too, that could be detected as an increase in the N1/
P2 component’s amplitude of the IDAEP [34,40,41]. The opposite effect is 
also observed when 5-HT neuronal activity is elevated in A1, as we have 
observed in early malnourished rats [35]. This same condition seems also 
occur in human babies with intrauterine growth restriction [36].

Results of biochemical analyses confirm the metabolic changes 
observed in a former study in diabetic children [39]: The FFT and the 
FFT-to-total L-Trp and the FFT-to-NAA ratios were significantly reduced. 
The decrease of FFT in plasma with the concomitant decrease of FFT-
to-NAA ratio suggest a decrease in the transport of the precursor amino 
acid to the brain that leads to a reduction of its availability at the 5-HT 
synthesis path, similar to that observed in the brain of diabetic rats [22-
25]. The low plasma FFT in type 1 diabetic children cannot be explained 
by the increase in FFA (free fatty acids) that normally would tend to favor 
an increase [41], because it is known that FFA compete with L-Trp for 
binding to plasma albumin [6]. Rather, the decrease in plasma FFT may 
be explained by a deviation of L-Trp to other metabolic pathways such as 
those of kynurenic and nicotinic acid [47,48], which could mask a possible 
increase, resulting in a final low FFT at the BBB level. On the other hand, 
in the diabetic state, there is stimulation of liver tryptophan oxygenase 
activity that may activate L-Trp catabolism [47,48]. The metabolic changes 
caused by the diabetic state in the plasma.

Alterations of the auditory cortex activity expressed by changes in the 
IDAEP (N1/P2 component) have been assumed to be a consequence of 
a hypothetical central mechanism regulating the sensory sensitivity. 
According to this hypothesis, a reduction reflects a pronounced activity 
of the central mechanism protecting the organism from sensory overload, 
whereas an increase reflects the lack of such a protection [49]. The 
measure of the ASF slope at various sound stimuli intensities supports the 
intensity-dependence of the N1/P2 component. Following these concepts, 
the increase of the ASF slope observed in diabetic patients in our studies 
[40,41], would indicate a deficiency of this regulatory mechanism. 
Interestingly various authors [50-52] have suggested that such a 
mechanism acts at the level of the brainstem and is most likely regulated 
by the serotonergic system [3]. Serotonin has a homeostatic function in 
the central nervous system and acts to adjust and control gain factors 
and excitability levels of cortical neurons [3,52]. The primary sensory 
cortices, in particular layer IV of the primary auditory cortex, contain 
a dense serotonergic innervation [53,54]. Layer IV also receives most of 
the specific thalamic sensory input [55]. Therefore, it has been proposed 
that serotonergic projections from the raphe nuclei in the brainstem 
do modulate the initial signal processing in the sensory cortex. So, we 
propose, based on the reported biochemical and electrophysiological 
results, that in diabetic patients, the response of the auditory cortex to 
different sound intensity stimulus may be also regulated by the current 
serotonergic activity, and in the case of children with type 1 diabetes 
a decreased serotonergic neurotransmission may provoke, as well, a 
different behavior of the sensory cortices and the different auditory cortex 
response detected by IDAEP, as an altered ASF of the intensity dependent 
N1/P2 component. The same serotonergic changes that modify the 
acoustic evoked potential response from cortex may be involved in the 
thalamic corticofugal gating [56,57]. Since there are abundant serotonin 
innervated GABAergic circuits in the sensory cortex, which act to inhibit 

Data T1DM C p
Glucose (mg/dL) 209.14 ± 10.66Ψ 90.55 ± 15.61 0.001
Glycosylated hemoglobin 
(%) 9.23 ± 3.37* 4.65 ± 0.54 0.01

Albumin (g/dL) 4.63 ± 0.10 5.00 ± 0.25
Free fatty acids (mmol/mL) 1.75 ± 0.16* 0.55 ± 0.02 0.01

Table 2: Biochemical data in plasma of schoolchildren with Type 1 diabetes 
mellitus (T1DM) and controls (C)
Ψ*Each point represents the mean value ± SD of 34 determinations from 
22 T1DM patients and 12 controls. All determinations were performed in 
duplicate. Differences were determined by Student t-test.

AMINO ACIDS T1DM C p

Valine 112.3 ± 12.07* 80.65 ± 5.48 0.01

Isoleucine 78.86 ± 11.08* 46.43 ± 4.70 0.01

Leucine 78.86 ± 11.08* 46.43 ± 4.70 0.01

Phenylalanine 49.86 ± 6.63* 33.75 ± 3.21 0.01
Tyrosine 66.76 ± 12.03* 30.69 ± 6.37 0.01

Table 3: Plasma concentration of neutral amino acids in schoolchildren 
with Type 1 diabetes mellitus (T1DM) and controls (C)
*Each point represents the mean value ± SD (µmol) of 34 determinations 
from 22 T1DM patients and 12 controls. All determinations were performed 
in duplicate sample. Differences were determined by Student t test.
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Figure 1: Illustrative examples of cortical auditory-evoked potentials (200 averaged responses) obtained at separate stimulations of 40, 60, 90 and 
103 dB sound pressure level. (A) Control adolescent. (B) Patient with type 1 diabetes mellitus. (Notice the significant increase in the amplitude of the 
N1-P2 component) (C) Patient with type 1 diabetes mellitus and depression. (D) Patient with depression without diabetes. Peak-to-peak amplitude of 
the N1/P2 component was measured at each stimulus intensity. Reproducibility tested by Levene and coefficient of variation tests.
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Figure 2: Multiple regression analyses and scatter diagram. □, (••• line), control adolescents, ASF slope=−0.05+1.54 intensity, r2=0.95, r=0.97; ●, (— 
upper middle continuous line), adolescents with type 1 diabetes mellitus, ASF slope=−0.07+2.24 intensity, r2=0.98, r=0.98; ∆, (– – line) type 1 diabetes 
mellitus with depression, ASF slope=−0.58+2.91 intensity, r2=0.95, r=0.97 and ○, (– ∙ – ∙ – lower middle discontinuous line) adolescents with only 
depression, ASF=−0.10+2.14 intensity, r2=0.98, r=0.96; ASF: Amplitude stimulus-intensity function.
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the neuronal responses, it is possible that a reduction of the serotonergic 
modulation on the GABAergic neurons [5] may enhance auditory cortical 
in activity and its response to sound intensity and the amplitude of N1/P2.

Conclusions
The findings here reviewed seem to have clinical relevance because 

brain serotoninis known to play an important role in the pathophysiology 
of various neuropsychiatric disorders that are commonly present in 
patients with type 1diabetes, like anxiety and depression [41,43-46]. 
Therefore, we propose the clinical use of the IDAEP (N1/P2 component) 
as a noninvasive electrophysiological indicator of changes in brain 
serotonin activity in patients with type 1 and 2 diabetes.
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