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Abstract
A number of tumor cell lines exhibit dependence on glutamine in vitro, a phenomenon termed as ‘glutamine addiction’. The rate limiting step 

in the processing of glutamine in mitochondria is controlled by glutaminase, an amidohydrolase that converts glutamine to glutamate. In many 
tumor cell lines the kindney-type glutaminase (KGA) and particularly its C isoform (GAC) are upreglulated. As such, inhibition of KGA/GAC has 
been viewed as an attractive strategy for exploiting tumor cells’ glutamine addiction for cancer therapy, as it aims to deprive them from their 
ability to metabolize a nutrient they apparently need for their survival and proliferation. In this very brief review we discuss the progress toward 
the identification of KGA/GAC inhibitors.
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Introduction
Metabolic differences between normal and cancer cells were observed 

for the first time about ninety years ago by Otto Warburg. In his 1924 
and 1925 papers ‘Ueber den stoffwechel der tumoren’ (About the 
metabolism of tumors) and ‘Ueber den stoffwechsel der carcinomzelle’ 
(About the metabolism of the cancer cell) Warburg was the first to show 
that when compared to normal tissue/cells, tumors exhibit increased rate 
of glucose uptake and lactic acid production even when ample oxygen 
was available [1,2]. Thirty-one years after the report of this phenomenon, 
called aerobic glycolysis or the Warburg effect, in 1955, Harry Eagle 
in his paper ‘Nutrition needs of mammalian culture cells’ described 
another interesting observation. HeLa cancer cells have high glutamine 
requirements in vitro for optimal growth when compared to normal 
mouse L fibroblasts [3]. Since then, research on the role of glutamine in 
cancer cell proliferation has revealed that high glutamine utilization and 
dependence, a property termed as ‘glutamine addiction’, is a metabolic 
hallmark of many tumor cells in vitro [4,5]. The Warburg effect has been 
linked, to the dysregulation of a number of pathways known for their 
involvement in cancer and multiple theories have been advanced for 
explaining its biological benefit to cancer cells [6,7]. Nevertheless, despite 
considerable progress in understanding this phenomenon, success in 
exploiting it for cancer therapy has thus far been limited to tumor imaging 
(18FDG-PET) [8]. Glutamine addiction, like the Warburg effect, has also 
been linked to dysregulation of pathways involved in cancer. The 
biological rationale proposed for it lies on the fact that, as glucose is 
quickly uptaken and converted to lactate, tumor cells increase their 
use/uptake of glutamine to produce a-ketoglutarate, to anapleroticaly 
fuel their Krebs cycle, and to also produce intermediates for the 
synthesis of lipids, nucleosides and other biomolecules needed for 
their proliferation and survival (Figure 1) [4,5]. As many cancer cells 
appear addicted to glutamine, taking advantage of this addiction has 
been considered as a very attractive strategy for cancer treatment and 
has drawn much attention, particularly over the last 10 years.

Inhibition of KGA/GAC: A Strategy for Exploiting 
Tumors’ Glutamine Addiction

Glutaminase is an amidohydrolase that converts glutamine to 
glutamate in the first step of the glutamine processing in mitochondria. 
The human genome encodes two main glutaminase isoforms, the kidney 
isoform (KGA/GLS1) and the liver isoform (LGA/GLS2). LGA is encoded 
by the GLS2 gene in chromosome 12, and it is highly expressed in liver 
and to a much lower degree in brain and pancreas [9]. KGA is encoded by 
the GLS gene, in chromosome 2, and has much wider tissue distribution 
than LGA [9]. Both enzymes are catalytically active as tetramers but 
have very different kinetic behavior in terms of activation by inorganic 
phosphate, Km for glutamine, and/or inhibition by glutamate [10]. In the 
1969 paper ‘The proportionality of glutaminase content to growth rate 
and morphology of rat neoplasms’, Knox et al. [11] demonstrated that 
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Figure 1: Simplified diagram of glutamine use in Kreb cycle anaplerosis 
and other intermediate production 

http://dx.doi.org/10.16966/2470-1009.133
http://dx.doi.org/10.16966/2470-1009.133


 
Sci Forschen

O p e n  H U B  f o r  S c i e n t i f i c  R e s e a r c h

Citation: McDermott L (2017) Kidney-Type Glutaminase Inhibitors for Treating Cancer. An Overview. J Drug Res Dev 3(2): doi http://dx.doi.
org/10.16966/2470-1009.133

Open Access

2

kidney glutaminase activity is proportional to the growth rate of tumors 
in rats. Since that paper, cumulative evidence suggests that KGA, and in 
particular the kidney glutaminase isoform C (GAC) splice variant that has 
a 71 residue shorter c-terminus, could be an important target for therapy 
[12-14]. TCGA (The cancer genome atlas) data suggest that there is high 
GLS gene expression in a number of cancers. Upregulation of KGA, and 
particularly GAC, has been seen in a number of human tumor cell lines and 
correlates with increased proliferative rates and in certain instances with 
tumor progression [5,13,15-19]. The observed KGA/GAC upregulation 
has also direct links to transcription factors and enzymes/pathways 
with concrete involvement in cancer such as Myc, STAT-1, c-Jun, Erb2 
and the RAF-RAS-MEK-ERK signaling pathways [20-25]. Furthermore, 
inhibition of KGA expression has been shown to inhibit tumor cell growth 
[26]. In this context, impairing the ability of tumors to process glutamine 
by selectively inhibiting KGA/GAC with small molecules has been viewed 
as an appealing and likely viable strategy for anti-cancer therapy.

KGA/GAC Inhibitors
A review of the literature suggests that DON (Figure 2) and L-2-

amino-4-oxo-5-chloropentanoic acid, are the earliest compounds cited 
as KGA inhibitors [27]. Both compounds act as glutamine mimics and 
inactivate the enzyme by covalently binding in the active site. Neither is 
KGA selective however, and both interact with several other targets in 
addition to glutaminase [28-30]. Among the two, DON also made it to the 
clinic but its development was halted due to excessive toxicity, apparently 
the result of its broad enzyme inhibition spectrum [31,32]. A screen of 
the 1280 member Library of Pharmacologically Active Compounds 
(LOPAC1280) identified ebselen, apomorphine and chelerytrine as agents 
that could inhibit KGA/GAC (Figure 3).Unfortunately the utility of these 
agents in studies/therapy is limited because they interact with other targets 
and their KGA/GAC vs LGA selectivity is very narrow [33]. In a different 
screen, thiourea THDP-17 (Figure 3) was identified as an un-competitive 
KGA inhibitor [34]. KGA/GAC vs LGA selectivity data have not been 
reported for this agent. Compound 968 (Figure 3) identified as KGA/
GAC inhibitor after protein pull down experiments where lysates from 
Cdc42-(F28L)-expressing NIH 3T3 cells were incubated with streptavidin 
beads labeled with the biotinylated N,N-dimethyl-bromophehyl moiety 
of 968, a key moiety for its activity [35,36]. Studies suggest that 968 
acts allosterically and preferentially binds to GAC monomers [37]. The 
KGA/GAC vs LGA selectivity of this compound has not been reported. 
However, there are data suggesting that 968 may also bind LGA [38]. As a 
probe, compound 968 has been featured in a number of biological studies. 
It has been shown to afford growth inhibition in glutamine-addicted 
cancer cell lines as well as growth inhibition in vivo in a P493B lymphoma 
mouse model [35,36,39-43]. The first truly selective KGA/GAC inhibitor 
reported was BPTES/SNX-1770 (Figure 4). This compound, along with 
a small list of close derivatives, first appeared in patent application US 

Figure 2: A: Structure of DON and its activity against the catalytic 
domain of KGA (cKGA) [30]. B: cKGA-DON co-crystal (PDB: 3VOY) 
showing covalent attachment to Ser 286 in the active site

Figure 3: Structures of ebselen, apomorphine, chelerythrine , THDP-17 
and 968 and their reported activities [33,34 and 36 respectively].

Figure 4: A: Structure of BPTES and its glutaminase selectivity profile 
[45]. B & C: Crystal structure of BPTES in complex with GAC (PDB: 
3UO9)

2002/0115698 A1. Initial kinetic and biophysical studies showed that the 
compound is a highly selective allosteric KGA inhibitor that upon binding 
leads to formation of inactive KGA tetramers [44]. Crystallographic work, 
using KGA and GAC, confirmed the BPTES allosteric binding mode and 
showed that the compound binds at the interface between two interacting 
KGA/GAC dimers, in a 2:4 stoichiometry, and stabilizes an important 
flexible loop between residues Glu320-Pro327 near the active site (Figure 4) 
[24,45,46]. In the binding region of BPTES, KGA/GAC and LGA differ 
in only 2 amino acids. Specifically, Phe318 and Phe322 in KGA/GAC are 
substituted in LGA by Tyr251 and Ser255 respectively. These differences 
and particularly the Phe322/Ser255 difference are key for the BPTES 
binding to KGA/GAC. Studies with KGA/GAC mutants revealed that 
a Phe318/Tyr Phe322/Ser double mutant or a KGA Phe322/Ser single 
mutant were unable to bind BPTES but they retained catalytic activity, 
while a Phe318/Tyr single mutant was catalytically active and also bound 
BPTES [24,45]. BPTES has been shown to effect cell growth inhibition in 
glutamine addicted cancer cell lines in vitro and tumor growth inhibition in 
test animals [19,22,39,47-52]. Despite of its demonstrated activity BPTES 
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did not advance to the clinic because of poor drug-like properties [52]. 
Preclinical formulation work that aimed to overcome its poor properties 
was recently published and demonstrated that BPTES encapsulation in poly 
(lactic-coglycolic acid)-poly (ethylene glycol) (PLGA-PEG) nanoparticles 
improved compound delivery and tumor uptake and afforded improved 
tumor growth inhibition than un-encapsulated BPTES in a JH090 
pancreatic tumor model [52]. Medicinal chemistry efforts aiming to 
expand the SAR (structure activity relationships) around BPTES and also 
produce BPTES derivatives or analogs/mimics with improved potency 
and drug-like properties have been reported by our laboratory and 
others and selected compounds from these efforts are shown in (Figure 
5) [53-56]. BPTES derivatives and BPTES analogs/mimics have also been 
claimed in recently published patent applications [57-65]. Among the 
broader class of BPTES-like compounds, the most advanced is CB-839 
(Figure 6) [57,66]. This compound is a more potent KGA/GAC inhibitor 
than BPTES. It binds in a similar fashion, was shown to have activity 
against various cancer cell lines and to effect tumor growth inhibition in 
the CTG-0052, JIMT-1, Caki-1 and other tumor models [18,56,66-69]. 
CB-839 is currently in Phase I/II clinical trials in combination with other 
agents (NCT02071927, NCT02071888, NCT02861300, NCT02771626, 
NCT02071862, NCT03047993 and NCT03057600). As a single agent 
CB-839 appears to exhibit an acceptable safety profile despite the 
relatively high, 600 mg twice a day with food, dose regimen required for 
maintenance of sustained therapeutic plasma levels and for the alleviation 
of its high absorption variability [70,71]. Early clinical reports suggest that 
the CB-839/azacytine combination for acute myeloid leukemia (AML), 
the CB-839 combination with everolimus for renal cell carcinoma (RCC), 
the CB-839/pomalidomide and dexamethasone combination for multiple 
myeloma (MM) and the CB-839/paclitaxel combination for triple negative 
breast cancer, warrant further study [72-75].

Discussion
The ability of selective KGA/GAC inhibitors to potently inhibit the 

growth of glutamine addicted cancer cells and afford tumor growth 
inhibition in vivo is well documented. The preclinical in vivo experience 
with these compounds, however, suggests that, as single agents, they 
can only achieve tumor growth inhibition and not tumor regression 
or stasis, as one would expect given the attributed importance of 
glutamine in Krebs cycle anaplerosis, the synthesis of nucleosides 
and other intermediates important for cell survival and proliferation 
[35,44,53,62,66,69,76,77]. The inability of KGA/GAC inhibitors to afford 
tumor stasis or regression as single agents may be accounted for by the 
fact that tumors are heterogeneous, they can use alternative fuels, such 
as acetate and lipids, and recent findings which show that the metabolic 
behavior of tumor cells in vitro and in vivo can be vastly different [78-
83]. Taking all of this into consideration it seems likely that, in cancer 
therapy, KGA/GAC inhibitors will be most useful in combination 
with other agents rather than as a stand-alone treatment. Preclinical 
exploration of combination regimens of KGA/GAC inhibitors with 
established chemotherapeutic agents and/or inhibitors of complementary 
pathways suggests that synergy is indeed possible [41,43,62,66,69,84-92]. 
For instance, the available preclinical in vivo data with CB-839 show that 
combinations with everolimus, paclitaxel, pomalidomide, 5-FU, 5-AZA, 
and anti-PD-L1/anti-PD-1 antibodies have enhanced efficacy and can 
produce tumor stasis/regression [66,69,85,90,92,93]. This offers hope that 
such combinations may translate to the clinic. Early clinical reports in 
that front appear encouraging [72-75]. However, it is too early to proclaim 
success. Ongoing and future clinical trials are expected to shed more light 
on the utility of these regimens and the utility of KGA/GAC inhibitors in 
general for cancer treatment.
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