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In silico methodologies have become a pivotal part of the modern 
drug discovery process. Since their origin, computational techniques 
demonstrated to accelerate hit selection for a given drug target, and to 
significantly contribute to multiple stages of drug discovery (i.e. drug 
optimization) [1]. Accordingly, in silico drug design and discovery is 
in a state of constant and rapid development due to: (i) progress in 
the computer science which has led to the generation of powerful and 
affordable supercomputers, proliferation of available online tools, 
software and databases and development of more reliable algorithms; (ii) 
development of new experimental procedures for the characterization of 
biological targets (i.e. X-ray crystallography and NMR spectroscopy); (iii) 
the greater awareness of the molecular basis of drug action.

Herein we analyzed the most relevant computer aided drug design 
(CADD) breakthroughs. A variety of computational approaches with diverse 
potential applications along the drug discovery process (Figure 1) will be 
discussed and the last improvements of the in silico tools and methodologies 
examined.

Ligand-based and Structure-based Methods in Drug-
Design

Pharmacophore modeling, three-dimensional quantitative structure-
activity relationships (3D-QSAR), Comparative Molecular Field 
Analysis (CoMFA) and Comparative Molecular Similarity Indices 
Analysis (CoMSIA) still remain the ligand-based (LB) methods of 
choice for fast virtual screening (VS) procedures. They are particularly 
powerful when the three-dimensional (3D) structure of the investigated 
protein is unknown [2-4]. VS is routinely employed by academia and 
pharmaceutical companies to identify novel chemical entities using public 
(e.g. ZINC database [5]), commercial or proprietary 3D-databases, with 
the possibility to screen billion of compounds in a short time, in order to 
reduce drug discovery costs [6]. The large amounts of available positive 
information (i.e. biological and structural data) allow the use of large 
dataset of known characterized compounds also for the development of 
3D-QSAR models. These are crucial information for relating the structural 
and/or physicochemical properties of compounds to their activities in 
order to obtain more robust statistical in silico models for predicting 
activities of novel chemical entities [7]. CoMFA and CoMSIA are powerful 
tools to generate 3D-QSAR models to correlate the biological activity of a 
set of molecules and their 3D shape, electrostatic and hydrogen bonding 
characteristics. This correlation is derived from a series of superimposed 
conformations, one for each molecule in the set. The molecular fields 
around each conformation are calculated and the resulting 3D models 
can be used in VS protocols by using for example SYBYL-X Suite (Certara 
USA, Inc., Princeton, New Jersey, NJ).

Accordingly, the expertise in the generation of QSAR models and the 
development of statistical packages employing public available databases 
(considering theoretical or experimental data), made possible the 
realization of revised structure-relationships models. Below are reported 
important examples: 

(i)	 3D quantitative structure-selectivity relationships (3D-QSSRs) 
models [8,9]. In this approach, by means of Phase software 
(Schrödinger, LLC, New York, NY), the classical 3D-QSAR was 
slightly modified taking as dependent variable the selectivity 
index of the compounds and not the activity toward a selected 
target (Cannabinoid Receptor 2). This allows the development of 
a comprehensive structure-selectivity instead of structure-activity 
model. The obtained model was successfully used to rationally 
design highly selective ligands for the Cannabinoid Receptor 2 
[8,10]; 

(ii)	 Multi-target quantitative structure-activity relationships (mtQSARs) 
models. These are useful for simultaneously estimating activities 
against different biological targets using big and unrelated datasets 
of compounds [11];

(iii)	3D quantitative structure-properties relationships (3D-QSPRs) 
models [12]. In detail, QSPR can be clustered in various sub-fields 
including quantitative structure -reactivity (QSRRs), -toxicity 
(QSTRs), -chromatography (QSCRs), -biodegradability (QSBRs), 
-electrochemistry (QSERs) relationships [12]. 

During the last decade, many scientific contributions appeared in the 
literature reporting improved QSAR methodologies. These advancements 
in structure-relationships models are extremely useful for rational drug 
design and for predicting ligands’ undesirable effects such as hERG K+ 
channel affinity. hERG K+ channel is a well-known antitarget responsible 
for cardiotoxic effects when targeted by centrally active drugs. In fact, the 
interaction of small molecules with hERG K+ channel is one of the major 
issues encountered by the pharmaceutical companies related to the drug 
development process. In the recent years several marketed drugs including 
astemizole, droperidol, terfenadine, lidolazine, sertindole, cisapride, and 
chlorpromazine have been withdrawn due to their relevant activity on 
hERG K+ channel. In this context, the generation of an adequate 3D-QSAR 
model based on hERG K+ channel blockers can assist the rational design 
of new potentially bioactive drugs devoid of hERG K+ channel affinity.

When the information of the 3D structure of the targets in complex 
with ligands are known, structure-based (SB) drug design approaches 
are useful for deriving SB pharmacophore models including excluded 
volumes (3D space portions in which the ligand cannot be located). The 
most commonly used software for generating SB pharmacophore models 
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are: e-Pharmacophores, implemented in Maestro suite (Schrödinger, 
LLC, New York, NY), LigandScout (Inte: Ligand GmbH, Vienna, Austria), 
Catalyst, implemented in Discovery Studio (Accelrys, Inc., San Diego, 
CA, USA) and SB pharmacophore, implemented in Molecular Operating 
Environment (MOE) (Chemical Computing Group’s (CCG), Montreal, 
QC, Canada). Among them, the e-Pharmacophores method achieves 
the advantages of both ligand- and structure-based approaches by 
generating energetically optimized SB pharmacophores that can be used 
to rapidly screen billions of compounds. Indeed, SB models are employed 
in large-scale chemical databases screening procedures. As reported 
for LB methods, the progress in the experimental procedures and the 
recent improvements in CPU performances coupled to the availability 
of large public 3D-chemical libraries, gave a boost to this computational 
approach. Intriguingly, a relevant advancement in SB pharmacophore 
modeling is represented by the use of multiple SB pharmacophore models, 
built employing available crystal structures of the protein of interest in 
complex with diverse ligands, in VS protocols. The SB models can be used 
as sequential filtering tools for screening chemical libraries. Alternatively, 
they can be combined in an inclusive SB pharmacophore model taking 
into account the most relevant interactions of ligands into the receptor 
for generating a comprehensive SB pharmacophore [13]. In both ways, 
multiple SB pharmacophore models can be used in VS or in rational 
ligand design for identifying novel chemical entities or for optimizing 
existing hits. Likewise, LB and SB methods can be combined for obtaining 
more reliable hybrid computational protocols. Following this approach a 
performance increase in retrieving active molecules for a given target has 
been observed [2].

Challenges in Molecular Docking and Protein Flexibility 
in Drug-Design

Regarding molecular docking techniques, important advances have 
been reported in the last few years relative to the in silico methods able 
to accommodate ligands into the binding site of their biological target. 

Docking algorithms and scoring functions can generate structures of 
receptor-ligand complexes; they may rank compounds, and can estimate 
binding energies/affinities using specific algorithms. Consequently, 
molecular docking is the most commonly used tool to screen large 
chemical databases directly into the binding site of the selected biological 
target and can be applied to a wide array of different clinically-relevant 
proteins from human, parasites, viruses or other organisms. The above-
mentioned procedure, defined as High Throughput Docking (HTD), 
to date can be applied to a wide range of different targets [14,15]. This 
is possible thanks to the recent advances in computing capabilities, 
molecular simulation algorithms, the growing number of available 
experimental 3D protein structures, and of robust molecular models in 
turn produced by using novel homology modeling techniques (i.e. models 
generated by using multiple templates). Recently, molecular docking has 
also been applied in a novel way to identify and validate potential targets 
for active compounds (target fishing) [16]. Considering the great number 
of available crystal structures, paralleled by the advantages of phenotypic 
screening methodologies, HTD of bioactive compounds against relevant 
targets, coupled to the evaluation of the binding free energy, could aid 
the identification of an unknown target for a given bioactive compound. 
Classical docking programs such as Glide (Schrödinger, LLC, New York, 
NY), Autodock, Genetic Optimization for Ligand Docking (GOLD) (The 
Cambridge Crystallographic Data Centre, Cambridge, UK) can be used 
for target fishing procedure. Moreover an automated procedure, namely 
Virtual Screening Workflow (VSW), for performing multiple docking 
considering different proteins combined with the evaluation of the 
binding energy of the selected ligand has been implemented in Maestro 
suite (Schrödinger, LLC, New York, NY). Also, different online tools are 
available for identifying potential targets for a given small molecule (i.e 
SwissTargetPrediction [17]). These tools consider the similarity of the 
molecule without targets with compounds known to be active against 
specific ones. Despite the great improvement in amount and quality of data 
available in the Protein Data Bank (PDB), in terms of number of proteins, 
resolution of crystals, and in general in terms of reliability of the protein 

 

Figure 1: Computer assisted drug design (CADD) pipeline.
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structures, several drawbacks for target fishing have been recently reported 
(i.e. improper pose predictions, scoring failures, binding site-ligand 
protonation interdependence, problems associated with generation of 
heterogeneous collection of binding cavities) [18]. Furthermore, modified 
molecular docking simulations aimed at improving the performance of 
standard molecular docking methods, continue to appear in the literature. 
A technique called “ensemble docking” was recently developed with the 
purpose of including protein flexibility in molecular docking calculation 
using multiple protein conformations. Consecutive docking calculations 
of each ligand into different conformations of a target receptor, represent 
a valuable method to mimic the dynamic nature of the biological target. 
In general, the performance of the “ensemble docking” technique is 
superior to that reported for docking into a single receptor conformation 
[19]. Another modified docking technique aimed at taking into account 
the protein flexibility is the Induced Fit Docking (IFD). This latter 
encompasses various steps such as ligands and proteins preparation and 
molecular docking, and induces conformational changes in the binding 
site to accommodate the ligand. In fact, this technique exhaustively 
identifies potential binding modes and related conformational changes 
by side-chain sampling, and backbone minimization in a selected radius 
around the poses found during the initial docking stage of the protocol 
[20]. Interestingly, a modified IFD protocol combining molecular docking 
with a rule-based approach to intrinsic reactivity has been developed for 
predicting potential sites of metabolism (soft spots) for a given ligand. 
This technique is useful for designing optimized derivatives which bear 
functionalities able to mask the identified soft spots. The IFD procedure 
calculates the accessibility degree of compounds to the cytochromes 
P450 (CYP) reactive center. The reactivity rules have been parametrized 
in P450 Site of Metabolism Prediction software (Schrödinger, LLC, New 
York, NY). The reactivity is predicted with a linear free energy approach 
based on the Hammett and Taft scheme, where the reactivity of a given 
atom is the sum of a baseline reactivity rate and a series of perturbations 
determined by the connectivity. This procedure is very useful for designing 
ligands with improved metabolic stability [21]. Further advances in 
docking calculations have been recently carried out by estimating ab 
initio charges of a given ligand for improving the docking predictions. 
The Quantum Mechanical-Polarized Ligand Docking (QPLD) workflow, 
implemented in Maestro suite (Schrödinger, LLC, New York, NY) [22], 
aims at improving the partial charges assigned to the atoms of the ligand 
in a docking run by replacing them with charges derived from Quantum 
Mechanical (QM) calculations. The computation is performed applying 
hybrid Quantum and Molecular Mechanical (QM/MM) method, where 
the protein is considered as the MM region and the ligand is defined as 
the QM region. In this way, the polarization of the charges on the ligand 
by the receptor is taken into consideration, and re-docking of the ligand 
is performed considering these QM charges. QPLD represents one of the 
recent applications of the hybrid QM/MM scoring method, which has 
rapidly become one of the most prevalent tools for investigating chemical 
reactivity in biomolecular systems, allowing the modeling of bond-
formation and -disruption [23]. However, the high computational costs 
for performing high-level QM calculations have restricted the applicability 
of these approaches. For hits identification by docking techniques, many 
improvements have been done about the scoring functions on the basis of 
entropy, desolvation effects, and target specificity.

Enhanced-Sampling Molecular Dynamics approaches 
and Coarse-grained Molecular Dynamics in Drug Design

To investigate ligand-receptor complexes and in general the dynamics 
and thermodynamics of biological systems, Molecular Dynamics (MD) 
simulations represent one of the major computational resources, since 
their introduction in the late 70s [24,25]. MD procedure calculates the 
behavior of a molecular system in a considered time, providing extensive 

data on fluctuations and conformational changes of proteins and nucleic 
acids [26]. At the moment, several programs for performing MD 
simulation are available. Among them, ACEMD (Accelera Ltd, London, 
UK), Chemistry at Harvard Macromolecular Mechanics (CHARMM), 
Assisted Model Building with Energy Refinement (AMBER) (University 
of California, San Francisco, CA), Groningen Machine for Chemical 
Simulations (GROMACS), Nanoscale Molecular Dynamics (NAMD) 
(Theoretical and Computational Biophysics group, University of Illinois 
at Urbana-Champaign, Urbana, IL) and Desmond (D. E. Shaw Research, 
New York, NY), are the most popular. Currently, it is possible to simulate 
complex systems (whole proteins) in solution with an explicit solvent, 
membrane embedded proteins, or large macromolecular complexes 
like nucleosomes or ribosomes [27-29]. The improvement of the latter 
technique, in terms of the size of the investigated molecular systems as 
well as in terms of extent of the performed simulations (i.e. µs and/or 
ms of simulations) [30,31] is in large part a consequence of the use of 
high performance computing, parallelized computer architectures, and 
the accessibility to more efficient algorithms. The improvement of MD 
simulations is also linked to the development of more accurate force fields, 
able to evaluate in a detailed manner the system under investigation in 
order to reproduce the properties of every particle of that system [32,33]. 
Recent examples are the improvement of CHARMM, AutoDock4Zn and 
Optimized Potential for Liquid Simulations (OPLS) force fields. These 
advances mainly concern: (i) the improved accuracy in generating 
polypeptide backbone conformational ensembles for intrinsically 
disordered peptides and proteins (CHARMM) [34]; (ii) the inclusion 
of specialized potential describing the interactions of zinc-coordinating 
ligands, describing both the energetic and geometric components of the 
interaction (AutoDock4Zn) [35]; (iii) the addition of off-atom charge sites 
for representing halogen bonding and aryl nitrogen lone pairs and the 
complete refit of peptide dihedral parameters to better model the native 
structure of proteins (OPLS) [36]. The progresses in the development 
of more accurate force fields made possible a more accurate prediction 
of the binding free energy. This latter is extremely useful in the lead 
optimization step [37,38]. Despite the advances in MD simulations, the 
excessive computational cost in terms of time computing, very often 
discouraged scientists to run adequate number of replicas to assess the 
reproducibility of the approach. For bypassing the time-scale restrictions 
of conventional MD simulations, new hardware resources have been 
developed. Accordingly, MD simulations are currently performed by 
graphics-processing-units (GPUs), increasing the rate of calculation of an 
order of magnitude. Moreover, new processors for these MD simulations 
have been specifically designed, building supercomputers able to 
accomplish microseconds of simulation per day [39]. The lust to perform 
long simulations, within a realistic time, inspired the development of a 
variety of enhanced sampling practices, employing constraints to speed 
up the progression of a system. For instance, there are several methods 
such as metadynamics [40], accelerated MD [41], and Coarse-Grained 
MD (CGMD) [42] that alter the normal progression of the system with 
a history-dependent biasing potential along the trajectory followed by a 
properly selected set of collective variables. In CGMD the accessible time-
scales of MD simulations are increased and the actual degrees of freedom 
of the system are reduced by linking atoms into aggregate particles. 
Although this technique has proven useful to study biomolecular systems, 
it is plagued by reduced resolution since could not succeed in capturing 
subtle but relevant properties such as the H-bonds system in solvents. MD 
simulations can treat proteins and ligands in a flexible manner, allowing 
the relaxation of the binding site around the ligand considering the effect of 
explicit water molecules. More accurate MD-based methods are available 
for estimating the binding free energy (thermodynamic integration (TI), 
linear interaction energy (LIE), free energy perturbation (FEP), and 
molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA)). As 
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above-mentioned, the accuracy in the estimation of the binding free energy 
using MD simulations can increase the efficiency of the drug discovery 
process [43,44]. A great improvement of the MD technique is represented 
by High Throughput Molecular Dynamics (HTMD), a novel technique 
based on the simulation throughput which allows understanding of drug 
interaction with biological targets with a high degree of resolution and 
accuracy. The method is a massive-scale MD simulation and can be used 
to screen chemical databases. This method showed, in the hit discovery 
step, higher performances than the HTD [45].

Conclusion
In summary, the huge technological progresses in hardware and software 

resources, algorithms design as well as the advances in the development 
of new experimental procedures for characterizing biological targets, 
make computer-assisted approaches (combined with specific biological 
investigations) the most valuable methods for limiting the time and costs 
of pre-clinical research. Furthermore, CADD approaches are employed 
for reducing the use of animals for in vivo testing, for helping the design 
of more effective and safer drugs and for contributing to the repositioning 
of known drugs. CADD represents a key instrument to assist medicinal 
chemists in drug design, discovery, development, and hit-optimization 
steps during the drug discovery process.
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