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Abstract
The RAS-RAF-MEK-ERK mitogen activated protein kinase (MAPK) pathway is a driver behind key cellular processes such as gene transcription, 

cellular proliferation, survival and motility and is aberrantly activated/dysregulated in many cancers. Mutations in RAS or RAF and/or increased 
signaling by receptor tyrosine kinases (RTK) associated with the cascade are frequently observed in many tumor settings and are linked to the 
dysregulation and aberrant activation of this pathway. 

MEK is a central component of this highly important cascade and has a unique allosteric pocket adjacent to its ATP binding site. As such, there 
has been an intense pursuit of allosteric small molecule inhibitors of this kinase. This pursuit, to date, has resulted in the advancement of 16 
compounds to clinical trials and the approval of trametinib (Mekinist®) for the treatment of melanoma. In this brief review we provide an overview 
of the RAF-RAS-MEK-ERK cascade, its cancer implications and brief account of the allosteric MEK inhibitors that reached the clinic.
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CH5126766/RO5126766, GDC-0623/G868, ARRY-300, Trametinib/GSK112212/JTP-74057/Mekinist®, Pimasertib/AS703026/MSC1936369B, 
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Introduction
MEK is a dual specificity kinase and a central component in the RAS-

RAF-MEK-ERK pathway, a well-characterized signaling cascade that is 
aberrantly activated in many tumors [1]. As MEK is a key component 
of this often dysregulated pathway, there have been many efforts to 
find inhibitors of this kinase as a potential treatment of cancer. The 
identification of small molecule inhibitors that bind MEK allosterically 
has been a major focus of these efforts. In this overview we provide a 
short discussion of the RAS-RAF-MEK-ERK signaling cascade and its 
involvement in cancer. We briefly discuss the current status and clinical 
findings of the allosteric MEK inhibitors that reached the clinic and the 
way these inhibitors bind to MEK.

The RAS-RAF-MEK-ERK cascade: Cancer implications 
and the rationale for targeting MEK

The RAS-RAF-MEK-ERK cascade is a driver behind cellular processes 
such as gene transcription, cellular proliferation, survival and motility [1].
RAS, the first member of the RAS-RAF-MEK-ERK cascade, is a member 
of the super family of GTPases. RAS activation follows the activation of 
upstream receptor tyrosine kinases (RTKs) associated with the pathway 
and involves RAS complexation with cofactors Shc/Grb2/SOS. Inactive 
RAS then exchanges GDP with GTP and via a change in its conformation 
becomes activated. There are four RAS isoforms namely H-RAS, K-RAS 
(4A and 4B) and N-RAS [1,2]. RAF, the second link in the RAS-RAF-
MEK-ERK cascade, has three isoforms A-RAF, B-RAF and C-RAF (also 
known as RAF-1) [1,3,4]. RAF kinases are serine/threonine kinases and 
share similar structural characteristics. However, they differ in their 
ability to phosphorylate and activate MEK, the next kinase member of this 
signaling pathway, with B-RAF being a much more potent activator of MEK 
than C-RAF or A-RAF[1,3,4]. MEK has two isoforms, MEK1 and MEK2. 

Both MEK  isoforms are highly homologous (80% overall similarity) and 
are activated by the RAF kinases through the phosphorylation of two 
serine residues in their activation loop (Ser218/Ser222 in MEK1 or the 
equivalent residues Ser222/Ser226 in MEK2) [1,5]. Upon activation, 
MEK1/2 phosphorylate their only known substrate, and the last member 
of the cascade, ERK [1,6]. There are two ERK isoforms, ERK1 and ERK2, 
and they are activated by MEK1/2 through phosphorylation on threonine 
and tyrosine residues (Thr202/Tyr204 in ERK1 or the equivalent Thr185/
Tyr187 in ERK2). The phosphorylated/activated ERK1/2 subsequently 
catalyzes the phosphorylation of multiple substrates in the cytosol and 
the nucleus that ultimately drive cellular proliferation, differentiation, 
survival and motility [1,6].

Since the RAS-RAF-MEK-ERK pathway plays a key role in the 
regulation of a multitude of critical cellular processes, it is not surprising 
that dysregulation and/or hyper activation of this pathway has been linked 
to cancer. Gain-of-function mutations, particularly in RAS and RAF, are 
important drivers in that regard. RAS mutations are observed in over 
30% of all human cancers and among the RAS isoforms the frequency of 
K-RAS mutations is the highest (22%) while the frequency of N-RAS and 
H-RAS mutations is lower (8% and 2% respectively) [2]. B-RAF activating 
mutations have been observed in multiple cancer types such as colorectal 
carcinomas, breast cancer, non-small cell lung carcinoma, melanoma and 
others. Mutation frequency appears to be highest in melanoma with about 
50-60% of melanomas harboring B-RAF mutations. C-RAF mutations 
have also been identified and are estimated to occur in approximately 1% 
of cancers[3,4,7]. MEK1/2 mutations in human tumors appear to be rare 
and there is no report in the literature suggesting prevalence of ERK1/2 
activating mutations in human tumors [8-12]. Increased signaling 
through the RAS-RAF-MEK-ERK cascade may also be effected by the 
aberrant activation of upstream RTKs associated with the pathway as a 
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result of increased ligand binding, increased dimerization or structural 
changes caused by genetic mutations in these RTKs [1,13].

Taking all of the above into account, it is evident that the RAS-RAF-
MEK-ERK cascade is a key pathway to target for the treatment of cancer. 
With respect to targeting specific components of the pathway, MEK has 
been viewed as a high value target [14]. There are multiple arguments in 
support of this assessment. MEK modulates only the activity of ERK, a 
kinase that modulates the activity of multiple substrates that are involved 
in cellular proliferation, survival and motility[1,6]. In this regard, MEK is 
a central node for the pathway and, as such, a point of strategic importance 
for intervention. Attempts to inhibit the pathway by interfering with RAS 
either directly or by inhibiting its farnesylation/translocation to the cell 
surface have not been particularly successful and, so far, the experience 
with RAF inhibitors in clinical use suggests that resistance builds quickly 
upon treatment with these agents [15,16]. As such, targeting MEK offers 
an alternative and complementary avenue to inhibit the cascade. Finally, 
as it will be shown in further detail below, MEK has a unique allosteric 
pocket adjacent to its ATP-binding site. This allows for the pursuit of 
highly selective allosteric inhibitors that, in principle, should be devoid 
of non-mechanism-related side effects and toxicities when compared to 
conventional ATP-competitive kinase inhibitors.

Allosteric small molecule MEK inhibitors
To date 16 allosteric small molecule MEK inhibitors have reached 

clinical trials. CI-1040 (PD-184352) was the first MEK1/2 inhibitor to be 
tested in humans [17]. Following CI-1040, the MEK1/2 inhibitors PD-
0325901, Selumetinib (AZD6244/ARRY-142886), AZD8330 (ARRY-
424704), Refametinib (RDEA119/Bay-869766), Cobimetinib (XL518/
GDC-0973), CH4987655 (RO4987655), CH5126766 (RO5126766), 
RO5068760, TAK733, Trametinib (GSK112012/JTP-74057/Mekinist®), 
Pimasertib (AS703026/MSC1936369B), Binimetinib (MEK162/ARRY-
438162), WX-554, ARRY-300 and GDC-0623 (G868) also advanced to 
clinical trials. 

The structures of WX-554 and ARRY-300 have not been disclosed. For 
the remaining inhibitors the structures are shown in Figure 1. As evident 
from this figure, there are common structural motifs and a good degree 
of similarity among the majority of these inhibitors. Enzyme kinetics and 
crystal structure data confirm that these compounds, and their structural 
analogs, bind to MEK1/2 allosterically [18-30]. The available crystal 
structure data also suggest that, for the most part, the majority of these 
inhibitors bind similarly. For example, the x-ray structure of MEK1 in 
complex with PD-0325901, a CI-1040 analog, is available and shows that 
this compound, and the CI-1040 type of analogs in general, bind at an 
allosteric pocket adjacent to the ATP binding site via a common set of key 
interactions that involve the Lys97, Ser212, Val127 triad of residues (PDB: 
3EQG, Figure 2A)[18,19]. In the MEK1 PD-0325901 cocrystal additional 
H-bonding interactions between the alcohol side-chain of PD-0325901 
and the phosphate groups of the ADP present in the crystal structure are 
also seen but omitted in Figure 2A for clarity [19]. Cobimetinib, another 
compound from the broad CI-1040 class, binds to MEK1 in a similar 
fashion and via the identical key interactions with Lys97, Ser212 and 
Val127 with respect to the compound core (PDB code: 4AN2)[20]. With 
respect to the piperidine containing side-chain of cobimetinib there are 
additional interactions, specific to this compound, between the nitrogen 
and hydroxyl groups with Asp190 and the γ–phosphate of ATP [20].

The core of CH4987655 binds in an identical fashion (PDB code: 
3ORN, Figure 2B) as PD-0325901 [21]. This is not surprising as the 
compound is part of the broader CI-1040 class of inhibitors. However, 
a unique feature in CH4987655 is its [1, 2] oxazinan-3-one side-ring. 
This ring resides in a pocket surrounded by Gly210, His188, Arg189, 
Asn221 and Met219 [21]. There is no apparent hydrogen bond between 

this side-ring and residues from the protein. The oxazinone moiety simply 
partially fills this pocket and effects a lateral displacement of the activation 
segment of the kinase [21]. Complexes of MEK1 with TAK733 (PDB code: 
3PP1), refametinib (PDB: 3E8N) and selumetinib (PDB: 4U7Z), a sister 
compound to binimetinib, also show that these inhibitors bind in the 
same MEK allosteric site. Despite their apparently different functionalities 
and cores these compounds bind in a fashion similar to the one already 
described through key interactions with the Lys97, Ser212, and Val127 
residue triad (Figures 2C-E) [23-25].  

RO5068760 and CH5126766 are the most dissimilar with respect to 
structure when compared to the rest of the compounds shown in Figure 
1. There is no published crystal structure available that elucidates the 
exact allosteric binding mode of RO5068760 with MEK. With respect to 
CH5126766, a cocrystal with MEK1 was recently disclosed and shows 
that this compound binds at the same MEK allosteric site (PDB: 3WIG, 
Figure 2F) [30]. However, the CH5126766 binding is differentiated as it 
does not involve the common key interactions with Val127 and Lys97 
seen with other inhibitors. Only the interaction with Ser212 is maintained 
(Figure 2F). A key feature in the MEK1-CH5126766 cocrystal is that that 
the fluoropyridine sulfonamide moiety of CH5126766 projects into the 
cavity where the CH4987655 [1, 2] oxazinan-3-one side-ring resides, 
and similarly, effects a lateral displacement of the kinase activation 
segment. Unlike the oxazin-3-one ring of CH4987655, however, the 
fluoropyridine sulfonamide moiety of CH5126766 makes direct and/or 
water mediated hydrogen bonding interactions with Arg189, Asn221, and 
Ser222 (Figure 2F) [30]. CH5126766 has greater potency toward K-RAS 
mutant cells when compared to PD-0325901 and similar inhibitors. It has 
been proposed that the CH5126766 hydrogen bonding interaction with 
Ser222, which is a RAF phosphorylation site, in conjunction with the 
lateral displacement of the MEK activation segment caused by its binding, 
prevent MEK from being activated/phosphorylated by C-RAF in K-RAS 
mutant cells and this ultimately translates to the greater potency observed 
against this type of cells [30]. The conformational changes that result from 
the CH5126766 binding to MEK also result in the formation of tightly 
bound unphosphorylated-MEK/RAF unproductive complexes [30]. It 
is of interest to note that for compounds that bind through the Lys97, 
Val127, Ser212 triad, the interaction strength with Ser212 appears to be 
a determinant in their ability to effectively inhibit RAS mutated tumor 
cells. It has been proposed that a strong inhibitor Ser212 interaction 
confers a better stabilization and reduced flexibility of the MEK activation 
segment and that such rigidification prevents RAF from accessing its 
phosphorylation sites on MEK, stabilizes RAF unphosphorylated-MEK 
unproductive complexes and leads to greater potency in K-RAS mutant 
cells [31].

Overview of clinical trials with the allosteric MEK 
inhibitors 

CI-1040 was the first MEK inhibitor that advanced to clinical trials 
[14,17]. This compound is potent (IC50 of 17 nM in the MEK enzyme 
assay) and showed activity in preclinical cancer models [32]. Its clinical 
development was halted in phase II, however, due to lack of efficacy [33]. 
High clearance that necessitated the use of very high doses (800 mg BID) 
and poor solubility that resulted in highly variable exposures have been 
cited as main reasons for the failure of CI-1040 in the clinic [14,33]. PD-
0325901 entered the clinic in 2004 as a replacement to CI-1040. It has 
improved pharmaceutical properties (solubility/stability) and greater in 
vitro (IC50 of 1 nM) and in vivo potency than CI-1040 [34]. Despite the 
improved properties and potency, an initial phase II study of this compound 
with non-small cell lung carcinoma (NSCLC) patients was prematurely 
terminated due to lack of efficacy and toxicity concerns[14,35]. Currently, 
PD-0325901 is being evaluated as a single agent in a phase II trial aimed to 
assess its efficacy against neurofibromatosis type-1 (NF1) and plexiform 
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neurofibromas (NCT02096471). PD-0325901 is also under evaluation 
in combination studies with the PI3K/mTOR inhibitor PF-05212384 
(NCT01347866), the EGFR inhibitor dacomitinib (NCT02039336) and 
the CDK4/6 inhibitor palbociclib (NCT02022982). 

Selumetinib is  also a potent allosteric MEK inhibitor (IC50 of 14 nM) 
with demonstrated activity in tumor cell lines with B-RAF and RAS 
mutations and several mouse xenograft models [36,37]. Selumetinib 
reached the clinic in 2004 where it was first studied in a phase I trial 
that involved 57 patients with advanced cancers. The results from this 
trial were published in 2008 and suggested that the compound was well 
tolerated at up to 100 mg BID dosing [38]. This initial trial was followed 
by a number of studies that aimed to assess selumetinib, as a single agent 
or in combination with other chemotherapeutics, in a number of cancer 
settings. In some of those trials end points were not met and/or the study 
report concluded that selumetinib offered no benefit [39-48]. Clinical 
activity that warrants further investigation was the conclusion of a recent 
phase II study report for the combination of selumetinib with paclitaxel 
in patients with K-RAS mutated NSCLC [49]. A similar conclusion was 
suggested in two reports from two phase II trials of selumetinib, as a single 
agent, in patients with low grade serous ovarian carcinoma and biliary 

cancer [50-52]. Another report from a phase II study of selumetinib in 
patients with metastatic thyroid cancer refractory to radioactive iodine 
treatment suggested that selumetinib, as a single agent, offers benefit and 
increases sensitivity to radioactive iodine treatment, especially in patients 
with N-RAS mutant tumors [53]. Interim results from an ongoing phase II 
trial of selumetinib versus temozolomide in patients with uveal melanoma 
also suggest that, as a single agent, selumetinib has greater activity than 
temozolomide in this chemotherapy resistant melanoma type [54]. Reports 
from phase II trials that studied the selumetinib/irinotecan combination 
as second line treatment in the K-RAS mutant colorectal cancer (CRC) 
setting and the selumetinib/erlotinib combination, in the chemotherapy 
refractory pancreatic cancer setting, concluded that these combinations 
warrant further exploration [55,56]. Preliminary activity was reported 
from two phase I trials of selumetinib, as a single agent, in children and 
young adults with neurofibromatosis or plexiform neurofibromas and in 
children with low grade gliomas [57,58]. Preliminary activity was also 
reported in phase I trials for combinations of selumetinib with the Akt 
inhibitor MK2206 and the EGFR inhibitor cetuximab [59,60]. At the time 
of this writing there were 40 recruiting and/or ongoing active clinical 
trials in the ClinicalTrials.gov registry in which selumetinib was listed as 
therapeutic intervention [61].   

Cobimetinib has an in vitro IC50 in the MEK enzyme assay of less than 
1 nM and has shown high potency and sustained growth inhibition of 
tumor xenografts in preclinical in vivo studies [20,62]. Data from phase 
I studies aimed to evaluate this compound either as a single agent or as a 
combination with the pan PI3K inhibitor GDC-0941 have been reported 
and suggested signs of efficacy and a manageable toxicity profile [63-65]. 
Data from a phase Ib study of cobimetinib in combination with the B-RAF 
inhibitor vemurafenib in patients with metastatic B-RAFV600 mutated 
melanoma also showed that this combination has activity, particularly in 
patients that are B-RAF-inhibitor-treatment naive [66]. Recently disclosed 
data from a phase III trial of the cobimetinib/vemurafenib combination, 
in the same cancer setting, showed an overall response rate of 68% and 
significant improvement in progression free survival [67]. On the basis 
of this data the FDA granted priority review to a new drug application 
(NDA) for the cobimetinib/vemurafenib combination for the treatment of 
patients with advanced B-RAFV600 mutated melanoma [68]. According 
to the ClinicalTrials.gov registry, at the time of this writing, there were 9 
recruiting and active ongoing clinical trials with cobimetinib [69]. 

Refametinib exhibits MEK1/2 inhibition in the enzyme assay that is 
similar to that of CI-1040 (IC50 of 19-47 nM) and has demonstrated activity 
in multiple xenograft tumor models [23]. Refametinib has been involved 
in 6 completed phase I and/or II trials that studied this compound either 
as a monotherapy or in combination with gemcitabine, sorafenib and the 
PI3K inhibitor copanlisib [70]. A report from a phase I trial that evaluated 
refametinib, as monotherapy, in patients with advanced cancer concluded 
that this compound is well tolerated up to 100 mg QD and showed early 
signs of clinical benefit [71]. A similar conclusion with respect to tolerability 
and early signs of benefit was also reached in a recent report from a phase 
Ib trial of refametinib in combination with copanlisib [72]. Data from a 
combination study of refametinib with sorafenib in Asian patients with 
advanced hepatocellular carcinoma (HCC) showed that this combination 
has antitumor activity but high toxicity. Dose adjustments were needed 
for almost all patients that participated in that study [73]. A phase II 
study report of the refametinib/gemcitabine combination in advanced 
pancreatic cancer patients suggested that this combination has activity and 
there was a trend for better response rates in patients with K-RAS wild-
type tumors [74]. At this time there are trials recruiting with the objective 
to study the combination of refametinib with sorafenib in RAS-mutated 
HCC (NCT01915602) and with the multikinase inhibitor regorafenib 
in patients with advanced or metastatic cancers (NCT02168777). There 
is also one ongoing refametinib/gemcitabine phase I combination trial 
focused solely on Asian patients (NCT01764828). 
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Figure 1: Allosteric MEK inhibitors that reached clinical trials
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CH4987655, RO5068760, CH5126766, AZD8330 and TAK733 all 
have nanomolar range IC50 potency in MEK enzyme assays (5 nM, 25 
nM, 160 nM, 7 nM and 3 nM respectively) and showed excellent activity 
in preclinical in vivo models [21,25,29,75,76]. These compounds have 
been profiled, as single agents, in phase I studies only. Data from the 
phase I trial of CH4987655 in patients with advanced metastatic tumors 
suggested that this compound has manageable toxicity and showed 
signs of benefit in 21% of the participants [77]. A report of the cohort 
expansion arm of this trial in patients with melanoma (B-RAF mutant 
and B-RAF wild-type), NSCLC (K-RAS mutant), and CRC (K-RAS 
mutant) was also recently published and concluded that CH4987655 
showed early signs of activity in the melanoma and NSCLC arm of the 
study but not the CRC arm [78]. There is no phase I study of RO5068760 
with cancer patients. The only available study with this compound is a 
phase I single ascending-dose study in healthy volunteers that suggested 
no clinically significant safety findings, moderate to high inter-subject 
variability with respect to pharmacokinetics and a rather moderate 
effect on the reduction of phosphorylated ERK levels in peripheral blood 
mononuclear cells of the study participants [79]. CH5126766 has been 
evaluated in two phase I trials one of which had only Japanese patients 
enrolled. Both studies reported a similar and manageable toxicity profile 
and preliminary antitumor activity [80,81]. The report from the only 
phase I trial of AZD8330 in patients with advanced cancers was published 
recently and suggested that the compound has manageable toxicity profile 
that is similar to other inhibitors of this class. The report also suggested 
that AZD8330 had clinical activity, defined as patients achieving partial 
response and stable disease for more than 3 months, in 26% of patients 
treated [82]. Results from the phase I trial of TAK733 suggested that 
there are hints of anti-tumor activity in patients with non-hematologic 
malignancies but high pharmacokinetic variability [83,84]. A planned 
phase I trial that aimed to study the combination of TAK733 with the 
aurora-A kinase inhibitor alisertib (NCT01613261) was withdrawn prior 
to patient recruitment [85].

Pimasertib has shown strong activity against tumor cell lines with 
oncogenic mutations or amplifications along the RAS-RAF-MEK-ERK 
pathway and tumor growth inhibition in mouse xenograft models [26,86]. 
According to the ClinicalTrials.gov registry, at the time of this writing, 
this agent was listed as therapeutic intervention in 7 active and recruiting 

studies [87]. Reports from a phase I study that evaluated pimasertib, as 
monotherapy, in patients with advanced tumors suggested a manageable 
toxicity profile and activity mostly in patients with B-RAF and N-RAS 
mutated melanomas [88,89]. Reports from a phase I trial of pimasertib 
in combination with PI3K/mTOR inhibitor SAR245409, in patients with 
advanced solid tumors, concluded that this combination is tolerated and 
shows signs of efficacy [90]. However, results from trials that aimed to 
evaluate pimasertib, as monotherapy, in patients with acute myelogenous 
leukemia (AML), the pimasertib/FOLFIRI combination, as second-line 
treatment for patients with K-RAS mutated metastatic CRC, and the 
pimasertib/gemcitabine combination, as a first line treatment, in patients 
with metastatic pancreatic (mPaCa), showed lack of efficacy and/or 
excessive toxicity [91-93].

Binimetinib has an IC50 of 12 nM against MEK and is efficacious in 
several xenograft tumor models [94,95]. According to the ClinicalTrials.
gov registry, binimetinib is listed as a drug intervention in 23 recruiting 
and ongoing active trials [96]. A report from a phase I cohort expansion 
study of binimetinib, as monotherapy, in patients with biliary tract 
cancers suggested an acceptable safety profile and signs of clinical 
activity [97]. Reports from a phase II study with patients with N-RAS 
and B-RAF mutated melanoma suggested that binimetinib is active in 
both settings [98,99]. Preliminary reports of ongoing phase I/II trials of 
binimetinib in combination with the B-RAF inhibitor LGX818, the PI3K 
inhibitor BYL719 and the CDK4/6 inhibitor LEE011 suggest that these 
combinations are tolerated and showed preliminary activity [100-102].

There is not much known about the clinical activity of GDC-0623 
(G868), Arry-300 and WX-554. According to the ClinicalTrials.gov 
registry, GDC-0623 (G868) has completed a phase I study in patients with 
locally advanced or metastatic tumors (NCT01106599) and Arry-300 has 
been profiled in a phase I study with healthy volunteers (NCT00828165). 
For either study, however, no data has been publicly disclosed to date.  
Up until recently, WX-544 was being investigated, as a single agent and 
in combination with the PI3K inhibitor WX-037, in two clinical trials 
(NCT01581060 and NCT01859351 respectively). However, these studies 
were terminated prematurely for business reasons and no data has been 
disclosed about them so far [103,104].

Trametinib is highly potent against MEK (IC50 of 0.92-3.4nM) [105]. In 

 

G868

Figure 2: Binding mode and key interactions between MEK1 and PD-0325901 (A), CH4987655 (B), Refametinib (RDEA119) (C), Selumetinib 
(AZD6244) (D), TAK733 (E) and CH5126766 (F)
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phase I trials in patients with solid tumors or lymphoma, trametinib, as a 
single agent, showed stable pathway inhibition, long half-life and clinical 
activity, particularly in patients with melanoma (confirmed response rate: 
33% in B-RAF mutant; 10% in B-RAF wild-type)[106,107]. This activity 
was further confirmed in a phase II cohort study in previously treated 
metastatic, B-RAF mutated, melanoma patients. The study showed a 25% 
objective response rate with B-RAF-inhibitor-treatment naive patients but 
limited clinical activity in patients who had been treated with a B-RAF 
inhibitor and had developed resistant disease [108]. Following these 
results, a phase III trial in patients with B-RAF mutant melanoma that 
were B-RAF-treatment naive ensued. This study involved 322 patients and 
showed an objective response rate of 22% and progression free survival 
of 4.8 months for the trametinib arm of the study vs 8% and 1.5 months, 
respectively, for the control arm of the study. Survival rate at 6 months was 
also better in the trametinib arm of the study (81%) vs the standard therapy 
arm (67%) [109]. Based on the results of this study the US FDA approved 
trametinib (May 2013) for the treatment of patients with unresectable or 
metastatic melanoma with B-RAFV600E/K mutations [110]. A recent 
report from a phase III trial that assessed the efficacy of trametinib in 
combination with the approved B-RAF inhibitor dabrafenib (Tanfilar®)
as a first line treatment for patients with B-RAF mutant melanoma 
concluded that this combination significantly improved overall survival in 
patients with metastatic melanoma with B-RAFV600E/K mutations and 
without increased overall toxicity [111]. This combination however does 
not confer significant benefit to patients that progressed while on B-RAF-
inhibitor monotherapy [112]. The US FDA granted accelerated approval 
to dabrafenib/trametinib combination in patients with unresectable or 
metastatic melanoma with B-RAFV600E/K mutations in January of 2014 
[113]. Preliminary reports of phase I/II trials of trametinib in combination 
with dabrafenib and the EGFR inhibitor panitumomab in patients with 
B-RAF mutant CRC suggested early signs of benefit [114]. Also reports 
from recently concluded phase I combination studies of trametinib with 
other chemotherapeutic agents suggested that the trametinib/docetaxel 
or trametinib/pemetrexed combinations in patients with advanced 
NSCLC have clinical activity [115,116]. Recent reports pertaining to use 
of trametinib as monotherapy vs docetaxel in patients with advanced 
K-RAS mutant NSCLC or its use in combination with gemcitabine vs 
gemcitabine alone in patients with metastatic pancreatic cancer suggested 
no benefit in these settings [117,118]. No benefit, due to high toxicity, was 
concluded in a recently published phase I trial report with respect to the 
combination of trametinib with the mTOR inhibitor everolimus [119].  
Studies with trametinib continue. At the time of this writing there were 
77 recruiting and/or ongoing active clinical trials with trametinib listed in 
the ClinicalTrials.gov registry [120].

Discussion and Conclusion
To date 16 allosteric MEK1/2 inhibitors have advanced into clinical 

trials and one of them, trametinib, has been approved by the US FDA 
for the treatment of B-RAFV600E/K mutated melanoma either as 
monotherapy or in combination with the B-RAF inhibitor dabrafenib 
[110,113]. 

The majority of allosteric MEK inhibitors that made it to the clinic 
have a good degree of similarity and common structural elements. Crystal 
structures for a number of these agents, or their analogs, with MEK1 are 
available and suggest that the majority of them, despite differences in 
cores and functionalities, follow a general binding motif that involves a set 
of common interactions with the Lys97, Ser212 and Val127 residues at an 
allosteric pocket adjacent to the ATP binding site.

Some MEK inhibitors are able to inhibit RAS mutant tumor cells 
better than others. The ability of MEK inhibitors to interact with the RAF 
phosphorylation sites of MEK and/or their ability to rigidify or laterally 

displace the kinase activation segment appear to be key in that regard. 
For instance, the ability of GDC-0623 to better inhibit K-RAS mutant 
cells than selumetinib, PD-0325901 and related agents is attributed to 
its strong H-bonding interaction with Ser212 that leads to less flexibility 
of the MEK activation segment and ultimately the inability of wild-type 
RAF to reach its phosphorylation sites, Ser218 and Ser222, on MEK [31]. 
Reports allude to the interaction of trametinib with Ser218, most likely 
via its acetyl group, as a possible reason for its ability to better inhibit 
the inactive un-phosphorylated form of MEK and to render it resistant 
to phosphorylation and activation by RAF in RAS mutant cells [28,30]. 
The greater effectiveness of CH5126766, versus that of PD-0325901 and 
similar compounds, in inhibiting the proliferation of K-RAS mutant 
cells, is attributed to its ability to prevent the C-RAF phosphorylation/
activation of MEK by interacting with Ser222 and by laterally displacing 
the MEK activation segment [30]. 

With respect to side effects, the commonly observed adverse events 
with MEK inhibitors include rash, diarrhea, fatigue, blurred vision and 
loss of visual acuity. CNS-related adverse events, elevation of creatine 
phosphokinase (CPK), retinal vein occlusion have also been observed 
[14]. Vision related adverse events appear to be unique to MEK inhibitors 
as opposed to adverse events seen with other kinase inhibitors.

Despite the importance of the RAS-RAF-MEK-ERK pathway in 
multiple cancer settings and the development of exquisitely potent MEK 
inhibitors, the clinical success with these agents so far has been narrow 
with respect to therapeutic window and scope. Primary resistance, due to 
feedback loops and cross talk with other pathways, or acquired resistance 
mechanisms offer an explanation for this assessment [14]. Combination 
regimens and the use of biomarkers that can identify patients that can 
benefit the most may be the answer to overcoming resistance and 
broadening the scope and success of treatment with MEK inhibitors. 
Toward that end, a number of studies aiming to identify biomarkers and/
or gene-expression signatures that may help predict response to MEK 
inhibitors were recently reported and clinical trials with MEK inhibitors 
in combination with other agents are in progress [121-124].
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