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Abstract
The germ theory of disease does not consider the functional state of the tissue where the inflammatory response takes place. This is vastly determined 
by the elements that comprise the extracellular matrix and their crosstalk. Local anesthetics can modify the communication between the cells of 
the ECM and due to their anti-inflammatory properties mitigate inflammation without suppressing the immunity. This is especially important in the 
Covid19 infection where the “cytokine storm” may lead to major complications like severe acute respiratory distress syndrome and even death. 
Animal models provide enough support for the use of local anesthetics in case of acute lung injury and ARDS. The intravenous administration of 
local anesthetics [e.g. lidocaine] seems to be a practical and efficient way to control inflammation and prevent complications though clinical trials in 
humans are still missing. Some other uses of LA are proposed as well.
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“The microbe is nothing, the terrain is everything.” The last words of Louis Jean Pasteur (Father of the “Germ Theory” of Disease) 

“It is what we know already that often prevents us from learning” Claude Bernard (Founder of the terrain-concept).

interaction between the cellular environment (extracellular matrix) 
and the cell has become evident. The “terrain concept” described by 
Claude Bernard more than 150 years ago [1], has been the foundation 
of what we now define as extracellular matrix. Unfortunately, the 
study of the cell and its structures monopolized in a great extend 
the interest of the researchers. According to Bernard, the terrain 
has clearly protective functions and allows somatic functions to be 
regulated in order to maintain vital activity. Possible disturbances of 
these functions first cause changes in the terrain fluids [extracellular 
matrix], in which the cells are embedded and finally lead to 
dysfunction and illness. Many years later, Alfred Pischinger [2] based 
on the work of Bernard and many others that followed him, defined 
the basic regulatory system of the extracellular matrix. This system, in 
contrast to the specific known systems in physiology, is an unspecific 
system which extends everywhere in the organism. The anatomical 
substrate of this system is the loose connective tissue. In epithelial 
cell groups or in the brain where extracellular space is reduced to a 
minimum the extracellular matrix forms the intercellular substance. 
Biochemically the extracellular matrix forms a structure consisting 
of proteoglycans, glycosaminoglycans and structural glycoproteins 
playing the role of a molecular sieve through which the entire 
metabolism of the capillaries going to and coming from the cell 
must pass through. The extracellular matrix is connected into the 

Introduction
There is no doubt that the germ theory of disease is the currently 

accepted scientific theory for many diseases. The essence of this 
theory is that microorganisms known as pathogens or “germs” can 
lead to infection and disease. The term germ includes not only diverse 
bacterial species, but it extends to any type of microorganisms or 
even non-living pathogens like viruses, prions or viroids. Although 
this view led to the development of very important drugs against 
the pathogens [antibiotics, antifungal or antiviral agents], very little 
attention was given the functional state of the tissue where infection 
and the subsequent inflammation take place. The term tissue can be 
defined as a group of similar cells from the same origin and their 
extracellular matrix that carry out together a specific function. In 
order to understand better the inflammatory response caused by 
pathogen, it seems reasonable to take a closer look to the functional 
unit of the cell and its surroundings e.g. the Extracellular Matrix 
(ECM).

The Basic Regulatory System of the ECM
The cell and its environment have been traditionally seen as two 

separate entities in the past and it is only recently that the importance 
of cell to cell communication as well as the importance of the 
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endocrine gland system through the capillaries, and into the central 
nervous system by the peripheral autonomic nerve fibers which 
end blindly in the extracellular matrix [3]. A very important cross 
communication exists between capillaries, nerves, connective tissue 
cells, mast cells and immune cells. Various mediators like peptides, 
hormones, cytokines, chemokines, neurotransmitters and many others 
make up the common language serving this communication between 
the elements of the system. At this point we should keep in mind that 
local anesthetics are able to modify this language by acting on cells 
that produce these mediators, especially in cases of inflammation [4]. 
Inflammation can be defined as a “host defense in response to injury 
of vascularized tissues” [5]. Regardless of the cause, inflammation 
presumably evolved as an adaptive response for restoring homeostasis. 
It is also generally thought that a controlled inflammatory response is 
beneficial (for example, in providing protection against infection), but 
it can become detrimental if dysregulated [6].

The basic regulatory system of the extracellular matrix is the most 
fundamental and oldest regulatory and information system in the 
organism, phylogenetically older than the hormone and nervous 
system [2]. It is also considered to be the place where the complex 
interactions between invading pathogens, host tissues and immune 
cells take place [7,8]. Furthermore, the ECM is a fundamental 
component of the host cellular microenvironment where most of the 
events leading to infection, disease and tissue repair take place and is 
also a reservoir of diverse and tissue specific signals (cytokines, growth 
factors, and other bioactive degradation products-matrikines) that 
feed into immunological pathways [9]. ECM per se can signal specific 
information to cells and modulate essential immune functions, such as 
immune cell migration into and within inflamed tissues, immune cell 
activation and proliferation, and cell differentiation processes, such as 
T cell polarization [10]. In the special case of the alveolar tissue the basic 
regulatory system consists of the endothelial basement membrane, the 
endothelial cells of the alveolar capillaries, the interstitial connective 
tissue with their associated fibroblasts, the alveolar epithelial 
basement membrane, the alveolar epithelial cells [Type I and Type II 
pneumocytes], and immune cells. The cross-communication between 
all these elements is decisive for health or disease.

Pathophysiology of Covid19-Infection
In late December 2019 groups of patients with pneumonia of 

unknown etiology were reported by the local health facilities in 
Wuhan, China. Soon after, the causative agent has been identified as 
a novel coronavirus by several independent laboratories in China. The 
causative virus has been temporarily named as 2019 novel coronavirus 
by the World Health Organization [11]. Since Covid19 is a new 
identified virus and not well studied yet, we try to extrapolate our 
present understanding of the pathology and pathogenesis of this virus 
based on our knowledge of SARS-CoV. The histopathology of SARS is 
characterized by Diffuse Alveolar Damage (DAD). In the initial phase 
the pathological alterations include necrosis of alveolar epithelial cells, 
intraluminal edema, fibrin exudation, hyaline membrane formation, 
hemorrhage and infiltrates with inflammatory cells such as monocytes 
or macrophages, lymphocytes and neutrophils into the alveolar wall 
and lumina [12-14] as well as elevated levels of serum proinflammatory 
cytokines and chemokines [15]. The epithelial destruction is attributed 
partly to the direct cytopathic effect and apoptotic mechanisms due to 
the viral invasion to the cells, resulting in lysis of the infected cells and 
inflammation of the surrounding tissue [13,16]. Therefore, the clinical 
deterioration of SARS-CoV infection may result from a combination 
of direct virus induced cytopathic effects and immunopathology 
induced by a “cytokine-storm” [17]. Various studies demonstrate high 

serum levels of certain cytokines and chemokines during SARS-CoV 
infection. Kong et al. reported increased levels of circulating cytokines, 
such as tumor necrosis factor α, CXCL-10 [interferon gamma 
inducible protein 10-strong leucocyte activator], interleukin-6, and 
interleukin-8 [18]. Additional studies have confirmed and extended 
these findings concerning various proinflammatory cytokines [IL-
1, IL-6, IL-12, IFN-γ, TGF-β,] and chemokines [19-21]. Increased 
expression of chemokines and cytokines such as IP-10, MCP-1, IL-6 
and IL-8 are important for chemotaxis and activation of neutrophils and 
monocytes [22]. Infiltration of these inflammatory cells corresponds 
with the severe pulmonary lesions observed in human cases [23-26]. 
This initial phase is followed by a proliferative phase with less epithelial 
damage, interstitial and alveolar fibrosis, bronchiolitis obliterans 
organizing pneumonia and regeneration that is characterized by type 
II pneumocyte hyperplasia [25,26]. The fibrotic phase after 14 days 
interstitial thickening is described with mild or moderate fibrosis and 
with just few inflammatory cells (mainly histiocytes and lymphocytes) 
[13,25,27]. Keeping in mind the pathophysiology described above, 
it appears reasonable that if the explosive inflammatory reaction 
induced by the “cytokine storm” can be confined within somehow 
acceptable limits for the homeostatic mechanisms of the host, it may 
raise the chances for survival or even complete therapy in lighter cases. 
Among many strategies and agents that are currently being tested, the 
therapeutic use of local anesthetics may offer a significant support for 
treatment.

Local Anesthetics and Inflammation
Local anesthetic agents are widely known and in clinical use 

for over a century mainly due to their nerve blocking properties. 
However accumulating data suggest that local anesthetics can act on 
non -neuronal tissues as well. It seems that local anesthetic effects 
on non-excitable cells [28] like monocytes [29,30], neutrophils [31-
34] and mast cells [35,36] may offer an explanation for a prolonged 
therapeutic effect than the pharmacological half -life of the drug [37]. 
Local anesthetics induce Gq-protein-complex mediated intracellular 
anti-inflammatory mechanisms [38], deactivate overactive 
granulocytes, inhibit the signaling of human NMDA receptors [39], 
induce vasodilatation [40] have antimicrobial properties [4], and 
exhibit a sympatholytic effect [41] and affect the synthesis and release 
of inflammatory mediators as eicosanoids, histamine, prostaglandins, 
and cytokines [4]. Due to the key position of the so called “cytokine 
storm” in the pathophysiology of SARS and Covid19 [42-48] the idea 
of using a drug like a local anesthetic that mitigates inflammation 
without suppressing the immunity seems quite reasonable. There 
is substantial clinical evidence supporting this idea [29,30,44-47]. 
Therefore, it seems worthy to consider implementing local anesthetics 
in the clinical practice in order to reinforce the treatment options 
concerning Covid19 associated pneumonia.

Local Anesthetics, Acute Lung Injury and ARDS
Acute respiratory distress syndrome is one of the most serious 

complications of the respiratory disease caused by Covid19 infection 
[48,49]. Lung vascular injury is the most important initial cause of 
Acute Respiratory Distress Syndrome (ARDS) [50]. Therapeutic 
options confine themselves to symptomatic treatment [lung-protective 
ventilation] rather than the cause of endothelial barrier dysfunction 
[51]. Local anesthetics may address the problem etiologically by 
effectively blocking inflammatory TNFα signaling in endothelial 
cells which leads to reduced neutrophil adhesion and endothelial 
hyperpermeability [52]. Injury to the lung endothelial barrier can 
occur by several mechanisms, but it seems that neutrophil-dependent 
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lung injury is the best-documented pathway [53-56]. In case of acute 
lung injury irrespective from cause, neutrophils accumulate in the 
lung microvasculature and become activated, leading to degranulation 
and the release of several toxic mediators, which result in increased 
vascular permeability and sustained functional loss of normal 
epithelial barrier. Nevertheless, neutrophils play an important role 
in host defense particularly against bacterial infection. Depletion of 
neutrophils may prevent lung injury but substantially impairs innate 
immunity [50]. Again, local anesthetics may offer a viable solution to 
the problem because neutrophils have been recognized as the primary 
anti-inflammatory target of local anesthetics [4,31-34]. The effects of 
local anesthetics on lung injury has been reported in several animal 
studies. Mikawa et al. examined the influence of lidocaine (2 mg/kg 
as bolus, then 2 mg/kg/h) on rabbits who were incubated with E. coli 
[57]. They found an increase in paO2 by lidocaine and improved lung 
mechanics in terms of improved compliance and reduced resistance. 
There was also a reduced level of pulmonary edema in comparison 
to the control group. In the bronchoalveolar lavage less leukocytes 
and a lower albumine content were found in the lidocaine group. 
By the use of chemiluminescence a lower oxygen radical production 
could be demonstrated. Histologically there were clear changes: The 
formation of hemorrhages, alveolar septal thickening and the number 
of inflammatory cells in the alveolar space were by lidocaine visibly 
reduced. Similar results were obtained by Nishina et al. in acid-
induced lung injury [58] and by Takao et al. in hyperoxia-related 
lung damage [59] on the rabbit model. An intratracheal application 
of hydrochloride [0.1 N, 3 ml/kg body weight] lowered the paO2 and 
compliance and led to an increase of IL-6 and IL-8. Lidocaine (2 mg/
kg body weight, then 2 mg/kg body weight/h) reduced superoxide 
anion production and counteracted morphological changes, if it was 
administered intravenously 10 min before or after the acid application 
[58]. More recent research on animal models confirmed the beneficial 
use of local anesthetics on lung injury [60-64].

Treatment
Unfortunately to the present day there are no clinical trials in 

humans for the treatment of ARDS. However, under the highly 
alarming conditions of Covid19 infection and its associated ARDS 
this problem should not discourage clinicians implementing local 
anesthetics to support and enhance the treatment of hospitalized 
patients. The valuable experience gained by the use of local anesthetics 
for the treatment of chronic [65,66] and postoperative pain [67-69] 
may pave the way to establish a protocol for the treatment of lung 
injury. Therefore, based on recommended lidocaine doses in the 
perioperative period, an administration of 0,015-0,030 mg/kg/min 
for 24-48h could be a starting line to establish a treatment protocol 
[70,71]. This is of course a general suggestion which should be adapted 
accordingly. Similar effects can be possibly achieved with procaine 
and procaine-base infusion [72] although the scientific evidence 
concerning procaine, lung injury and ARDS is still missing.

Conclusion
Considering the severity of the Covid19 infection with its associated 

complications due to the “cytokine storm” phenomenon, the 
therapeutic [systemic] use of local anesthetics may be justified. Taking 
into account the special circumstances under which hospitalized 
patients are being treated, systemic use of local anesthetics is more 
feasible and safer in comparison to local or segmental treatments that 
may also have the potential to alter the functional state of the lungs. 
Examples of local treatment may include any intervention with local 
anesthetics in the dermatome, myotome or sclerotome of Th2 to Th9 

[sympathetic innervation of the lungs] which utilize vegetative reflexes 
[e.g. cutivisceral reflex path] addressing the lungs. C4 segment is also 
an option because it could influence the activity of the phrenic nerve 
and subsequently the functionality of respiration. The best example of 
segmental treatment is the stellate ganglion block [73-75] which could 
be very promising for the treatment of acute lung injury [76,77] and 
for attenuating the systemic inflammatory response [78].
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