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Fluorescence microscopy has been widely applied in many different 
biological aspects for sensing and imaging of biological samples, including 
cell imaging, real time monitoring of biomolecules and biomarkers 
detection. The commonly utilized light microscopy techniques are 
confocal, epi-fluorescence, multi-photon, total internal reflection 
fluorescence microscopy (TIRFM). Amongst all the fluorescence imaging 
techniques, TIRFM, also known as the evanescent field microscopy, has 
received considerable attention due to its unique properties. TIRFM is 
considered as a powerful technique, which enable in-vivo and in-vitro 
monitoring of dynamic and kinetic interaction of the biomolecules in 
single-molecules and single-cells level. 

Configuration and Properties of TIRFM
Total internal reflection occurs when the excitation light beam 

propagating through a dense medium (high refractive index) encounter 
another less dense medium (low refractive index) with an incident angle 
greater than the critical angle (θc). The critical angle is derived by Snell’s 
law: θc = sin-1(n2/n1), where n2 and n1 are the refractive index of the dense 
and less dense medium respectively. Instead of propagated through the 
less dense medium, certain amount of incident light is reflected off at 
the interface, this phenomenon is known as total internal reflection. At 
the same time, some of the incident energy will transmit through the 

interface and generated a standing electromagnetic field called evanescent 
field. Unlike other form of light, evanescence light decays in the intensity 
exponentially over a sub-wavelength distance. The intensity of the 
evanescent field (Iz) at any position (z) can be calculated by Iz=I0exp-z/d, 
where I0 is the intensity at z=0, d is the penetration depth of the evanescent 
field that can be obtained by d=λ / (4π (n1

2sin-1θ - n2
2)1/2), where λ is the 

wavelength of the excitation light beam in vacuum. The penetration depth 
of the light beam is typically ~100-300 nm. In a prism-type TIRFM the 
penetration depth can be controlled by three factors: (i) the wavelength 
of the excitation source, the longer the wavelength of the light source, the 
deeper the evanescent field is. (ii) The incident angle of the light source, 
the penetration depth decreases while increasing the incident angle. The 
last but not least, (iii) refractive index of the less dense medium, as the 
refractive index of the less dense medium increases, the penetration depth 
also increases. 

In TIRFM since the intensity of the evanescent field decays 
exponentially, fluorophores closer will be excited more strongly than the 
fluorophores away from the interface, which gives a high-contrast image of 
the fluorophores near the interface. In addition, because of the penetration 
depth of the evanescent field is very shallow, only fluorophores within the field 
will be excited, while the rest in the bulk solution will remain “silent”. It gives 
a high signal-to-noise ratio and reduces the photo-damage on the analytes.

 
Figure 1: Schematic of TIRFM setup.
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Real-Time Monitoring of Single Biomolecules and Cells
Reports have demonstrated the capability of TIRFM for in-vitro 

quantification of disease associated biomarkers for instances, a single-
molecule detection assay for quantification of microRNAs (miRNAs) and 
circulating miRNAs in cell lysate and human serum samples. The developed 
assays are highly sensitive, specific, and successively differentiate different 
stages of cancer [1,2]. Researchers also applied TIRFM imaging system to 
monitor the aggregation kinetics of beta-amyloid peptide [3-10]. Simon 
group reported the utility of TIRFM as one of the imaging approaches to 
reveal a previously unobserved view of the genesis of individual virions. 
They were also able to explore the different parameters of viral assembly 
that are inaccessible with other conventional techniques [11]. Nosrati et 
al. [12] monitored the sperm motion which is well-known to be a crucial 
role in fertilization and were able to resolve the nature of this motion. 
Using TIRFM, they selectively imaged motile human and bull sperm to 
revealing a two-dimensional (2D) ‘slither’ swimming mode. This behavior 
was found to be distinguishable from bulk and near-wall swimming 
modes. The influence of media viscosity was studied and a strategy was 
suggested for the human sperm that is suitable for the highly viscous and 
confined lumen within the fallopian tube [12]. Real-time monitoring 
and tracking of single molecules or single cells in wide field mode is very 
attractive for high-throughput studies. Coupling several lasers of different 
excitation wavelengths which can be switched in microseconds precisely 
with an acousto-optical tunable filter (AOTF) allows sophisticated multi-
color biomolecular imaging and tracking [13]..1

TIRFM is no longer limited to 2D imaging; Fang group demonstrated 
that the z-positions of fluorescent nano particles close to the cell baso 
lateral membrane can be extracted by collecting the fluorescence 
intensities at different incident angles. Once the incident angle is reduced 
to be in the sub-critical range, the TIRFM works as a pseudo-TIRFM by 
which the whole cell-body can be monitored from bottom to top [14]. 
Three-dimensional tracking strategies are hence established [13]. 

In short, highly sensitive single-molecules and single-cells fluorescence 
microscopy techniques, like TIRFM, are powerful tools for addressing 
clinical and scientific challenges. However, novel with high spatial 
resolution microscopy techniques are valuable tools to evaluate the 
functionality of those interested biomolecules in a complex cellular 
environment. 
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