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Abstract
Pluripotent stem cells (PSCs) can be utilized to obtain a renewable source of healthy regulatory T cells (Tregs) to treat autoimmune arthritis as 

they have the ability to produce almost all cell types in the body, including Tregs. However, the right conditions for the development of antigen (Ag)-
specific Tregs from PSCs (i.e., PSC-Tregs) remain unknown. An ongoing project will determine the mechanisms underlying the Ag-specific PSC-Treg 
treatments that aim to modulate tolerance in autoimmune arthritis. The knowledge gained from these studies will provide new insights into cell-
based therapies in autoimmune arthritis, and advance the understanding of fundamental mechanisms underlying Treg differentiation.
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Regulatory T cells (Tregs) are an integral component of the normal 
immune system and contribute to the maintenance of peripheral 
tolerance. Tregs can down-regulate immune responses and are essential 
for immune homeostasis. They can act as key effectors in preventing and 
treating rheumatoid arthritis (RA) [1,2].

Hematopoietic stem cell (HSC)-derived hematopoietic progenitors 
migrate into the thymus and develop into different types of T cells. 
The transcription factors Aire (largely expressed in thymic medullary 
epithelial cells - mTECs) and FoxP3 have key functions in clonal deletion 
and Treg selection [3]. There are links between Aire expression, FoxP3 up-
regulation and Treg selection; Aire deficiency affects the negative selection of 
self-reactive T cells, and FoxP3 controls the development and function of the 
naturally occurring Tregs(nTregs) [4]. Our laboratory has shown the development 
of stable Tregs from CD4+ T cells by over-expressing FoxP3 and bcl-xL [5].

Recent advances in the use of large-scale in vitro expansion of Tregs 
followed by in vivo re-infusion of these cells raises the possibility that 
this strategy may be successfully utilized for the treatment of rheumatoid 
arthritis (RA) [6]. Although polyclonally expanded populations of Tregs 
exhibit suppressive activity, antigen (Ag)-specific Tregs are more efficient 
at suppressing local autoimmune disorders such as RA, type-1 diabetes 
(T1D), inflammatory bowel diseases (IBD), allergic reactions and graft-
versus-host disease (GVHD) [7-11]. In addition, tissue/organ-associated 
Treg targeting stabilizes FoxP3 expression and avoids induction of a 
potentially detrimental systemic immunosuppression [12,13]. For Treg-
based immunotherapy, in vitro generation of tissue/organ (e.g., synovium)-
associated and non-terminally differentiated effector Tregs for in vivo re-
infusion is an optimal approach. However, current methodologies are 
limited in terms of the capacity to generate, isolate, and expand a sufficient 
quantity of such Tregs from patients for therapeutic interventions. 

A number of challenges exist in Treg-based immunotherapy:

First
Only low numbers of Tregs can be harvested from the peripheral blood 

mononuclear cells (PBMCs). CD4 and CD25 have been used to isolate 
Tregs for ex vivo expansion. CD4+CD25+ T cells are not homogenous 

and contain both Tregs and conventional effector T cells (Teffs). Current 
expansion protocols activate both Tregs and Teffs, and because it takes 
a longer time for Tregs to enter the S phase of cell cycle, Teffs outgrow 
Tregs [14]. In addition, Tregs can lose suppressive activity after repetitive 
stimulation with α-CD3 plus α--CD28 antibodies (Abs) with or without 
rIL-2 in vitro. 

Second
No approach to date has demonstrated the capacity to isolate the 

entire Treg  population with 100% specificity from patients (the current 
clinical approach). Even FoxP3 or more recently Eos, a transcriptional 
factor that is considered the gold standard for identification of Tregs, is 
expressed transiently in some activated non-regulatory human T cells 
[15], highlighting the difficulty in both identifying and isolating a pure 
Treg population. The adoptive transfer of non-regulatory Teffs with Tregs has 
a potential to worsen autoimmune diseases. 

Third
Gene transduction of CD4+ T cells from PBMCs with Ag-specific T 

cell receptor (TCR) [16] or chimeric Ag receptor (CAR) [17] and/or 
TCR with FoxP3 elicits the generation of suppressive T cell populations 
[8] and overcomes the hurdle of the limited numbers of Ag-specific T 
cells. However, the engineered Tregs express endogenous and exogenous 
polyclonal TCRs, which reduce their therapeutic potential (the current 
experimental approach). Also, TCR mispairing is a concern with regards 
to the safety of TCR gene-transferred Tregs for clinical use, because the 
formation of new heterodimers of TCR can induce immunopathology 
[18]. Therefore, there is a need to improve this strategy and generate 
monoclonal Tregs. 

Fourth
The differentiation state of Tregs is inversely related to their capacity 

to proliferate and persist. The “right” Tregs resist terminal differentiation, 
maintain high replicative potential (e.g., expression of common- γ chain- 
γc, CD132), are less prone to apoptosis (e.g., low expression of PD-1), and 
have the ability to respond to homeostatic cytokines [19], which facilitates 
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their survival. In addition, the “right” Tregs express high levels of molecules 
that facilitate their homing to lymph nodes (LNs), such as CD62L and 
CC-chemokine receptors (e.g., CCR4, CCR7), and maintain stability or 
plasticity under certain inflammatory conditions. Furthermore, after an 
effective immune response, the “right” Tregs persist and provide protective 
immunity. 

Fifth
Because there are too few cells, harvesting sufficient numbers of 

tissue-associated Tregs from PBMCs for TCR gene transduction can be 
problematic. 

Taken together, strong arguments support the development of Treg-
based therapies in autoimmune arthritis using engineered Tregs. While 
clinical trials show safety, feasibility, and potential therapeutic activity of 
Treg-based therapies using this approach, concerns about autoimmunity 
due to cross-reactivity with healthy tissues remains a major safety issue 
[20,21]. In addition, genetically modified Tregs using current approaches 
are usually intermediate or later effector Tregs [22], which only have short-
term persistence in vivo.

To date, pluripotent stem cells (PSCs) are the only source available to 
generate a high number of the “right” Tregs [23,24]. Human induced PSCs 
(iPSCs) can be easily generated from patients’ somatic cells by transduction 
of various transcription factors and exhibit characteristics identical 
to those of embryonic stem cells (ESCs) [25]. Many genetic methods 
as well as protein-based approaches have been developed to produce 
iPSCs with potentially reduced risks, including that of immunogenicity 
and tumorigenicity [26]. Because of the plasticity and the potential for 
an unlimited capacity for self-renewal, iPSCs have high potential for 
advancing the field of cell-based therapies.

Our laboratory was the first to show that the development of Ag-
specific iPSC-CTLs or iPSC-Tregs can be used for cell-based therapies of 
cancers and autoimmune disorders [23,24,27-30] other groups reported 
similar results [31-33]. We demonstrated that genetically modified iPSCs 
with Ag-specific TCR and the transcriptional factor FoxP3, followed 
by differentiation driven by Notch signaling can enable iPSCs to pass 
hematopoietic and T lineage differentiation checkpoints, resulting in 
the development of Ag-specific CD4+Tregs.We have developed a novel 
system to generate stable Ag-specific iPSC-Tregs. Our ongoing studies will 
validate this system and provide new insights into the methodologies 
and mechanistic requirements for efficient development of inflamed 
tissue-associated iPSC-Tregs. Once such strategies become available, there 
is potential to facilitate the generation of tolerance for autoimmune 
arthritis. Thus, important advances towards Treg-based immunotherapy in 
autoimmune arthritis are anticipated from the proposed studies.

PSCs are exposed to a number of signals responsible for their 
progression. Although the exact signals are not fully understood, part of 
the mechanism known to be critical for directing T-cell fate occurs via 
Notch signaling. The Notch is evolutionarily conserved; regulating cell fate 
decisions in a number of cell and tissue types. Ligand binding by members 
of the Jagged or Delta-like (DL) families results in the proteolytic cleavage 
and release of the intracellular fragment of the Notch heterodimer. 
Translocation to the nucleus then allows for its regulation of gene 
expression. Notch-1, specifically, is critical for the establishment of T-cell 
fate. The loss of function results in the blockade of T cell development and 
enhanced B cell production, while over-expression results in the blockade 
of B cell lymphopoiesis and leads to the generation of T cells [34]. 
However, the intracellular signaling pathways by which Notch signaling 
regulates the differentiation of Ag-specific PSC-Tregs remain unknown. 
PSCs co-cultured on a monolayer of the bone marrow (BM) stromal cell 
line OP9 cells transfected with the Notch ligand DL1 or 4 exhibits the 

ability to differentiate into most hematopoietic lineages and T cells [31]. 
Our studies will determine the critical regulations of Hes1 [35], Runx1 
[36], and surviving [37] by Notch signaling during the development of 
autoAg-specific PSC-Tregs.

Although Ag-specific human iPSC-Tregs may have promising therapeutic 
effects in cell-based therapies, their efficiency is limited by the need to 
generate a large number of such cells using complex and expensive in vitro 
differentiation. In addition, the lengthy duration for generating human 
iPSCs may limit their use in individualized therapies. Alternatively, we 
will perform cell-based therapies using the TCR/FoxP3 gene-transduced 
iPSCs, which can differentiate into auto Ag-specific iPSC-Tregs in vivo and 
suppress autoimmune arthritis. We will perform arthritis induction before 
or after the adoptive transfer of the gene-transduced iPSCs. We will inject 
Notch agonists or recombinant cytokines (e.g., rIL-7, rFlt3L) to boost in 
vivo development of auto Ag-specific iPSC-Tregs.

In summary, a current roadblock to progress in the field is the lack of 
an efficient system to generate the “right” autoAg-specific Tregs that could 
be used for cell-based therapies in autoimmune arthritis. We propose 
the use of PSC-Tregs to address this limitation, allowing derivation of a 
large number of stable autoAg-specific PSC-Tregs for cell-based therapies. 
Development of such an approach provides an important step toward 
personalized therapies for autoimmune arthritis.
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