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Abstract
Aim: To examine the association of TLR4 Asp299Gly and MICA exon 5 microsatellites polymorphisms with severity of trachoma in a sub-

Saharan East Africa population of Tanzanian villagers. 

Methods: The samples were genotyped for MICA exon 5 microsatellites and the TLR4 299 A/G polymorphism by Restriction Fragment Length 
Polymorphism (RFLP), and GeneScan®, respectively. The association of TLR4 Asp299Gly and MICA exon 5 microsatellites with inflammatory 
trachoma (TI) and trichiasis (TI) were examined.

Results: The results showed an association between TLR4 and MICA polymorphisms and trachoma disease severity, as well as with protection. 
TLR4 an allele was significantly associated with inflammatory trachoma (p=0.0410), while the G allele (p=0.0410) was associated with protection.

Conclusion: TLR4 and MICA may modulate the risk of severity to trachoma disease by modulating the immune response to Ct. In addition; 
the increased frequency of MICA-A9 heterozygote in controls may suggest a positive selection of these alleles in adaptation to environments 
where Ct is endemic.
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Core Tip
Genetic polymorphisms in Toll like receptor 4 (TLR4) and Major 

histocompatibility complex (MHC) class I chain related gene (MICA) 
might be associated with host immunity to Trachoma disease and its 
subclinical phenotypes. Since their alleles vary among individuals and 
may confer variable disease susceptibilities, understanding the significant 
role that MICA and TLR4 alleles play in host inflammatory response is 
useful in research studies on inflammatory diseases. The data suggest that 
Tanzanians who carry the MICA-A9 and Asp299Gly TLR4 G alleles have 
lower risk to Trachoma disease.

Introduction
Trachoma disease is characterized by repeated episodes of Gram-

negative Chlamydia trachomtis (Ct) infections. The infection causes 
a chronic inflammatory and immune fibrogenic process leading to 
conjunctival scarring and blinding squeal [1]. Approximately, 84 million 
individuals worldwide have active infections; 1.2 million are estimated 
to have visual impairment, and 3% to have blindness [2,3]. The ocular 
disease progresses through five stages, which may overlap with increasing 

severity. These phases include trachomatous inflammation, follicular 
(TF), trachomtous inflammation, intense (TI), trachomatous scarring 
(TS), trachomatous trichiasis (TT), and corneal opacity (CO). 
According to this classification, the first two grades TF and TI represent 
acute infection, whereas the other three grades represent the chronic stage 
of the disease [4,5]. 

Prolonged inflammation may lead to TS and TT. Although many 
individuals are infected with Ct, only 3% will develop blinding squeal. 
Moreover, the majority of infections are asymptomatic and evidence has 
shown that disease might persist weeks after the infection has resolved 
itself [6]. This may indicate that host genetic factors might play an 
important role in modulating the inflammatory response to Ct, thereby 
determining the pathogenesis of Trachoma diseases. Candidate genes 
underlying the immune response to bacterial infection are ideal targets 
for studying their genetic polymorphisms and their association with Ct 
pathogenesis.

Major histocompatibility complex (MHC) class I chain related gene 
A (MICA) plays an important role as ligand for activating killer cell 
C-type lectin-like receptors, subfamily D (NKG2D) (natural-killer group 
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both 1996 and 1999 with the same chlamydia ompA genovar. Those who 
had chronic infection were more likely to have had trichiasis, scarring, 
and active trachoma in 1996 [28,29].Overall, there were 127 samples, and 
DNA was suitable for analysis in 122. Cases were women and girls with 
trichiasis ± inflammatory trachoma (TI) (n=21), and controls were women 
and girls with no or minimal disease (nonscarring, noninflammatory 
follicular trachoma, with or without infection [n=77]).

In the second group, the Family Trachoma Study (FTS), 15 families 
from one village were chosen because they had persistently infected 
children (probands) at three time points in a 1-year period (n=15). OmpA 
genotyping data indicated that this was likely persistent infection or 
reinfection with the same strain [30], suggesting an inability to mount 
a protective response. These children constituted the cases. The controls 
were meant to be their parents (n=12) and siblings (n=40) who had 
minimal or no disease (i.e., two parents had follicles, but no control had 
inflammation, scarring, or trichiasis). 

Disease was classified using the simplified World Health Organization 
clinical grading scheme of the tarsal conjunctiva as follows: no trachoma 
(TN), ≥ 5 follicles of at least 0.5 mm each as follicular trachoma (TF), 
≥ 50% of normal deep tarsal vessels obscured because of inflammatory 
thickening of upper tarsal conjunctiva as inflammatory trachoma (TI 
± TF), and at least 1 eyelash touching the cornea or evidence of recent 
removal of in-turned lashes as trichiasis (TT) [31].

Chlamydial DNA
A previously published and validated polymerase chain reaction-

enzyme immunoassay for a conserved region of the MOMP-1 gene was 
used to detect C. trachomatis infection from lysed tarsal conjunctival 
swabs [32].This study also describes the collection and processing of 
ocular samples. Every fifth PCR sample consisted of a swab inserted into 
PCR buffer by the sampler in the field. The contamination rate was 0.1%.

DNA extraction
DNA was extracted as described in a previous publication [26]. DNA 

samples from buccal mucosa were obtained in 1999 in the field, using 
sterile nylon cytology brushes (Medical Packaging Corp, Camarillo 
CA). This method was used because peripheral blood mononuclear cells 
were difficult to obtain at the time, and this method has been shown to 
be suitable for different genetic analysis methods. The brush was gently 
twirled on the buccal surface, and then placed into separate envelopes 
and stapled to the participant’s data sheet and consent form. Samples were 
dried in the porous envelope, which aided in the preservation of the DNA. 
The cytology brushes were placed in 0.6 ml of 50 mM NaOH and 0.2 
mM EDTA, followed by incubation at 80°C for 10 minutes, and cooling 
to 25°C. The brushes were then gently agitated and removed to release 
DNA. The samples were neutralized with 50 µl of 1 M Tris-Cl. For longer 
storage, an equal volume of 90% glycerol/water was added to the lysate 
and preserved at -80°C. 

In order to eliminate any suspended proteins and RNAs, all DNA 
samples were further purified using QIAamp (Qiagen Inc., Valencia CA). 
Briefly, 400 µl of the preserved lysate were placed in a 2 ml microcentrifuge 
tube containing 20 µl of Proteinase K. The tubes were then incubated at 
56°C for 10 min, followed by the addition of 400 µl of ethanol (96–100%) 
to the samples. 700 µl of the mixture from the previous step was applied 
to the QIAamp Spin Column and was centrifuge at 6000 × g (8000 
rpm) for 1 min. The QIAamp Spin Column was placed in a clean 2 ml 
collection tube and the filtrate was safely discarded. After repeating the 
centrifugation step, 500 µl of AW1 Buffer was added to the spin column 
and centrifugation was performed at 6000 × g (8000 rpm) for 1 min. This 
step was repeated with AW2 buffer. In the last step QIAamp Spin Column 
was placed in a clean 1.5 ml microcentrifuge tube to which 150 µl of AE 

2, member D) receptors expressed on the surface of all CD8 αβT cells, 
γδT cells, and most NK cells [7]. Under normal conditions, expression 
of MICA molecules is restricted to intestinal and thymic epithelium [8]. 
When MICA is engaged by activating NKG2D, the latter functions as a 
signal transducer of cellular distress and triggers a range of immune 
effectors mechanisms including cellular cytotoxicity, cytokine secretion, 
and cellular proliferation [9]. There are 101 recognized human MICA 
alleles and 41 different MICB alleles that have been identified so far 
by the European Bioinformatics Institute [10,11]. The microsatellite 
polymorphism in exon 5 of the MICA gene consists of eight alleles based 
on the number of GCT/AGC triplet repeat units (alleles A4, A5, A6, A7, 
A8, A9, A10) and the presence of an additional nucleotide G/C insertion 
(allele A5.1) [12-14].Microsatellite polymorphisms of the MICA have 
been shown to be associated with immunologically-mediated diseases 
such as the chronic systemic inflammatory disorder Behcet’s disease [15]. 

Toll-like receptor 4 (TLR4) is a pattern recognition receptor for 
lipopolysaccharide (LPS) [16,17] and has been shown to induce the 
expression of genes involved in inflammatory responses [18,19]. Upon 
infection with Ct, the bacterial LPS is bound by LPS binding protein 
(LBP) and transferred to a receptor complex consisting of CD14, TLR4, 
and the adapter molecule MD2. This complex will initiate a signal 
transduction cascade leading to the release of pro-inflammatory cytokines 
such as tumor necrosis factor α (TNF-α) via the transcription factor 
nuclear factor (NFκB) [20]. Several single nucleotide polymorphisms 
(SNPs) in TLR4 have been reported to modulate the responsiveness to 
LPS by lowering the affinity to LPS [21]. Epithelial cells respond to Ct 
LPS with the nuclear translocation of NF-κB, indicating that signaling 
occurs through interaction with TLR4 and CD14, leading to the release of 
pro-inflammatory cytokines [22]. Twenty-nine SNPs have been identified 
in the human TLR4 gene [23]. Of these, the Asp299Gly (rs4986790) 
polymorphism has been shown to cause hyporesponsiveness to LPS in 
human alveolar macrophages and airway epithelial cell [24]. Individuals 
carrying the Asp299Gly TLR4 allele have lower levels of proinflammatory 
cytokines, acute-phase reactants, and soluble adhesion molecules, such as 
interleukin 6 and fibrinogen [25]. 

Given that inflammation and innate immunity are strongly implicated 
in the pathogenesis of trachoma infection, and that genetic variations in 
TLR4 and MICA affect the innate immune response, the aim of this study 
was to determine whether the TLR4 Asp299Gly and MICA microsatellite 
polymorphisms contribute to the susceptibility and severity of Trachoma 
disease in a Tanzanian population.

Materials and Methods
Informed consent was obtained for immunogenetic studies in 1996 

in accordance with the Declaration of Helsinki and was approved by 
the institutional review board at Johns Hopkins University The samples 
in this study were collected under a Johns Hopkins University approved 
IRB protocol for immunogenic studies in patients with Trachoma from 
Tanzania. We previously published first set of data from these samples 
[26]. All adult recruited patients gave a written consent form, while 
minors had their parents or guardians signed on their behalf.

Study participants
Two subject groups were included in this study. The first was the 

Trichiasis Study Group (TSG), whose subjects were culled from a 
longitudinal study started in 1989 on the development of scarring and 
trichiasis in women (n=4932) [27].In 1996, a subset of 186 infected and 
186 uninfected women were randomly chosen from a population-based 
sample of women and girls aged 16 and older from 11 villages in Kongwa 
district, Dodoma region, Tanzania [28]. At follow-up in 1999, 74 subjects 
were infected and 85 were uninfected; 73% of the subjects were infected in 
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Buffer was added followed by incubation at room temperature for 1 min, 
and then centrifuged at 6000 × g (8000 rpm) for 1 min. The purified DNA 
was stored at -20°C.

Restriction fragment length polymorphism (RFLP)
TLR4Asp299Gly polymorphism was selected by designing primers 

from regions flanking the polymorphic site and distinguishing the 
normal and mutant alleles by size on agarose gels. The procedure 
was performed according to Lorenz et al. [33]. The forward primer 
sequence was altered to generate a restriction site in the minor allele. 
The following primer pair was used for TLR4 Asp299Gly, forward 
5”-GATTAGCATACTTAGACT ACTACCTCCATG-3” and reverse 
5”-GATCAACTTCTGAAAAAGCATTCCCAC- 3”. The underlined 
bases in forward primer indicate the nucleotide altered to create NcoI 
(TLR4Asp299Gly) restriction site. Reactions were performed using the 
Platinum Taq® PCR kit (Applied Biosystems, Foster City, CA, USA). 
Polymerase chain reaction(PCR) was performed in a total volume of 33 µl 
(20 to 60 ng of genomic DNA, 0.5 U Taq DNA polymerase, 10 pmol of each 
primer,10 mmol of each dNTP, and 50 mmol MgCl2. Reactions were run 
on a 96-Well GeneAmp® PCR System 9700 (Applied Biosystems, Foster 
City, CA USA) using the following conditions: 94°C for 1 min, then 30 
cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 30 s). Eight microliters 
of the resulting PCR products were used for an overnight digest with 
restriction enzyme, and analyzed using 4% agarose gel electrophoresis 
system (BMA, Rockland, ME, USA) to determine the TLR4 allele.

Microsatellite for MICA
For analysis of microsatellite repeat polymorphism in the TM region of 

the MICA gene, the following primers were described before [34]: forward 
MICAF: 5’-CTTTTTTTCAGGGAAAGTGC-3’ and reverse MICA5R:5’-
CCTTACCATCTC- CAGAAACTGC-3’. The forward primer was labeled 
at the 5’end with 6-FAM (PE Biosystems, Foster City, CA). PCR reactions 
were carried out using the Ampli-Taq Gold® PCR kit (Applied Biosystems, 
Foster City, CA, USA). PCR was performed in a total volume of 25 µL (5µl 
of 20 to 60 ng of genomic DNA, 0.5 U Taq DNA polymerase, 10 pmol 
of each primer,10 mmol of each dNTP, and 25 mmol MgCl2. Reactions 
were loaded on a 96-Well GeneAmp® PCR System 9700 (Applied 
Biosystems, Foster City, CA USA) using the following conditions: 94°C 
for 2 min, then 30 cycles of 94°C for 1 min, 55°C for 1 min, and 72°C for 
2 min. To determine the number of triplet repeats in the TM region of 
the MICAgene, 1 µl of the pooled PCR products was mixed with 10 µl 
of formamide and denatured for 5 min at 95°C. The samples were then 
placed on ice for at least 5 min, after which they were loaded onto an 
ABI PRISM 3100 (Applied Biosystems, Foster City, CA USA). The data 
generated from ABI 3100 were analyzed using the GeneScan® Analysis 
Software. Its algorithms automatically identify and size each peak relative 
to an internal size standard, as well as provide peak area and peak height 
information. The results from Gene Scan software were imported and 
filtered using Genotyper® software to provide final results such as allele 
calls and automated table building.

Statistical analysis
The statistical analyses were performed using the SAS/STAT® software, 

version 9.1 (SAS Institute Inc., Cary, NC). Differences in subject 
characteristics were compared by the chi-square or Fisher’s exact test for 
categorical values or by Student’s t-test for continuous variables. Hardy 
Weinberg Equilibrium (HWE) was calculated using control subjects 
by comparing expected genotype frequencies to observed genotype 
frequencies using chi-square. For each SNP genotype, tests using the co-
dominant, dominant, recessive, and log-additive genetic models were 
performed. Unconditional logistic regression models were used to calculate 
odds ratios (ORs) with 95% confidence intervals for genotypes in order to 

estimate the effect of the SNP presence on Trachoma risk controlling for 
age. Two-sided p-values ≤ 0.05 were considered as statistically significant. 
Participants with missing values were omitted from the analyses. Genetic 
modeling was performed using the statistical analysis package R (Lucent 
Technologies, Murray Hill, NJ).

Results
The MICA-A9 allele was found to be statistically significant in both 

TI (OR=0.63 95% CI: 0.4164-0.9532, p= 0.0520) and TT (OR=0.53 95% 
CI: 0.3306-0.8496, p=0.0239) groups when compared to the control group 
(TN) (Table 1).

When the MICA-A9 genotypic frequency distribution was measured 
against the rest of the MIC-A alleles, we found that it was significantly 
associated with developing trichiasis (TT) when compared to the controls 
(OR=2.324 95% CI: 1.187-4.548, p=0.016; Table 2). Also, the relative risk 
is increased in subjects who are heterozygousity and homozygous for the 
MICA-A9. The results showed that the risk was three times higher when 
the MICA A9 allele was absent in the TT patients (OR=1.549 95% CI: 
1.104-2.017, p=0.016; (Table 2) which indicates a protective role in the 
population.

The TLR4 A allele frequency was significantly higher in inflammatory 
trachoma cases (OR=6.350, 95% CI: 1.167-34.538, p=0.0410) while 
the TLR G allele was higher in the controls (OR=0.160 95% CI: 0.029-
0.870, p=0.0410; Table 3). Allele and genotype frequencies did not 
differ significantly between TT patients and healthy controls, while in 
the TI group TLR4 A/A was significantly higher in the cases and the 
heterozygosity was higher in the controls (Table 4).

Discussion
The data presented here show that genomic variation in the human 

MICA microsatellite in exon 5 and in TLR4 Asp299Gly are associated 
with the conjunctival inflammatory response due to the infection with 
the human pathogen Ct. pathogenic environment is a major determinant 
of the evolutionary pathway that leads to the change in the genetic 
makeup of the innate immune system genes. Polymorphisms in TLR4 
and MICA are examples of these changes and have been related to the 
biology of the inflammatory responses to bacterial infections [35,36]. 
MICA interacts with NKG2D activating receptor expressed on CD8+ T 
cells, gamma delta T cells, and NK cells in humans [7]. MICA is known 
to trigger NK cells and co-stimulates some γδT cells and antigen-specific 
αβCD8+ T cells by engaging NKG2D expressed on these cells. In αβCD8 
T cells, NKG2D/MIC engagement delivers a co-stimulatory signal that 
complements TCR-mediated antigen recognition on target cells. Allez 

Microsatellite allele Cases Controls P-value Odds Ratio [95% CI]
TI

(104) (348)
A4 6 16 0.6261 1.27[0.5673-2.8431]
A5 7 10 0.0697 2.44[1.0657-5.5864]

A5.1 25 80 0.8239 1.06[0.6898-1.6289]
A6 40 121 0.4903 1.17[0.8018-1.7073]
A9 26 121 0.0520 0.63[0.4164-0.9532]

TT
(82) (370)

A4 5 17 0.5672 1.35[0.5726-3.1830]
A5 5 12 0.2190 1.94[0.7926-4.7486]

A5.1 23 82 0.2534 1.37[0.8722-2.1519]
A6 31 130 0.6478 1.12[0.7410-1.6929]
A9 18 129 0.0239 0.53[0.3306-0.8496]

Table 1: Association of MICA microsatellite alleles with TI and TT clinical 
phenotypes of Trachoma
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MICA-A9 Genotype Cases(n) Controls(n) p-value Odds Ratio [95% CI] Relative risk[95% CI]
TI

(52) (174)
9:9 4 23 0.399 0.547[0.189-1.595] 0.582[0.214-1.499]
9:x 18 75 0.336 0.699[0.369-1.325] 0.803[0.521-1.174]
x:x 30 76 0.083 1.758[0.944-3.273] 1.321[0.970-1.708]

TT
(41) (217)

9:9 1 26 0.092 0.184[0.031-1.103] 0.204[0.035-1.091]
9:x 16 109 0.233 0.634[0.323-1.244] 0.777[0.502-1.115]
x:x 24 82 0.016 2.324[1.187-4.548] 1.549[1.104-2.017]

Table 2: Genotypic frequencies for MICA- A9 microsatellite in the TI and TT clinical phenotypes of Trachoma
X: Allele other than A9. Significant p value (<0.05)

TLR4 allele Cases (n) Controls (n) P-value Odds Ratio[95% CI]

TI
(118) (330)

A 113 313 0.0410 6.350[1.167-34.538]
G 5 17 0.0410 0.160[0.029-0.870]

TT
(100) (348)

A 94 336 0.2521 0.560[0.242-1.298]
G 6 12 0.2521 1.790[0.772-4.148]

Table 3: Association of TLR4 Asp299Gly alleles with Trachoma in Tanzania

TLR4 Genotypes Cases (n) Controls (n) p-value Odds Ratio[95% CI] Relative risk[95% CI]

TI
(59) (165)

A/A 58 149 0.0464 6.230[1.131-34.313] 1.000[0.735-1.361]
A/G 1 15 0.0583 0.170[0.031-0.939] 0.223[0.033-1.501]
G/G 0 1 - - -

TT
(50) (174)

A/A 44 163 0.1815 0.490[0.204-1.177] 1.000[0.691-1.448]
A/G 6 10 0.1303 2.240[0.920-5.453] 1.764[0.891-3.495]
G/G 0 1 - - -

Table 4: Association of TLR4 Asp299Gly genotypes with Trachoma in Tanzania

et al. [37] provided evidence that MICA expression was significantly 
increased on intestinal epithelial cells isolated from patients with crohn’s 
disease and inflammatory bowel disease, which indicates the role of 
MICA in the inflammatory response of stressed epithelial cells. Mei et al. 
[38] investigated the association of polymorphic extracellular domains of 
MICA alleles with genital Ct that cause tubal infertility in women. The 
data suggested that the MICA locus might modify host inflammatory 
response to Ct infection. In this study, MIC-A9 allele was found to be 
more frequent in the healthy subjects, which indicates a protective role. 
Mok et al. [39] reported on a possible protective role of MICA-A9 in the 
susceptibility to rheumatoid Arthritis in Korean subjects. Also, It has 
previously been reported that the MICA-A9 allele might confer protection 
from IDDM and celiac disease in the Spanish population [40,41]. This 
indicates that cells expressing MICA-A9 molecules might be properly 
recognized by  γδ T cells, CD8+αβ T and NK cells, all of which are likely 
to have a role in overcoming Chlamydial infection and subsequently 
resolving Trachoma disease. 

The noticeable degree of association of polymorphism that encodes 
structural modifications to the extracellular domain of TLR4 [24,42] with 
bacterial infections in different populations [43-45] provides compelling 
evidence for a role for this key innate immune signaling molecule in the 

response to Gram-negative bacterial infections. In our study, the TLR4 
G allele was found to be protective (p=0.0410) and the A allele to have 
a predisposing in the TI phenotypes (p=0.0404 and 0.0410 respectively). 
Predictive modeling studies [24,46] indicate that this SNP is situated in the 
binding domain of the TLR4 protein and that inheritance of the SNP would 
interpose conformational changes that could potentially alter interaction 
of TLR4 with other molecules such as MD2 that is required for signaling. 
The TLR4 A/G genotype was found to be protective in the inflammatory 
trachoma when compared to the A/A homozygous genotype. Similar 
results were noticed in this study for MICA-A9 heterozygote that was 
relatively high in the Tanzanian population, and the risk increased as the 
MICA-A9 genotypes for heterozygote and homozygotes rates decreased 
in the healthy controls. The theory of heterozygote advantage [47] is often 
used to explain the genetic variation found in natural populations which 
might explain the protective role of MICA-A9 heterozygosity. Our results 
indicate that MICA-A9 and TLR4 Asp299Gly heterozygosity may confer a 
selective advantage in Tanzanian populations where Trachoma is endemic. 

In summary, our findings suggest that MICA and TLR4 may associate 
with host immunity to Trachoma disease and its subclinical phenotypes. 
Since their alleles vary among individuals and may confer variable disease 
susceptibilities, understanding the significant role that MICA and TLR4 
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alleles play in host inflammatory response is useful in research studies 
on inflammatory diseases. Our results demonstrate that Tanzanians 
who carry theMICA-A9 and Asp299Gly TLR4 G alleles have lower risk 
to Trachoma disease. Further investigation can focus on the structure 
function relationship of these polymorphisms to mechanism of activity 
in regulation of the inflammatory response to Ct infections in Trachoma.
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